Properties

Label 2-317130-1.1-c1-0-16
Degree $2$
Conductor $317130$
Sign $1$
Analytic cond. $2532.29$
Root an. cond. $50.3219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s − 11-s + 12-s − 4·13-s − 15-s + 16-s − 8·17-s + 18-s + 6·19-s − 20-s − 22-s + 4·23-s + 24-s + 25-s − 4·26-s + 27-s + 2·29-s − 30-s + 32-s − 33-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s − 1.10·13-s − 0.258·15-s + 1/4·16-s − 1.94·17-s + 0.235·18-s + 1.37·19-s − 0.223·20-s − 0.213·22-s + 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.784·26-s + 0.192·27-s + 0.371·29-s − 0.182·30-s + 0.176·32-s − 0.174·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(317130\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(2532.29\)
Root analytic conductor: \(50.3219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 317130,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.215323503\)
\(L(\frac12)\) \(\approx\) \(4.215323503\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 + T \)
31 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 8 T + p T^{2} \) 1.17.i
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.71286075087317, −12.29733239856969, −11.73057712509791, −11.36710158120366, −10.89092566313574, −10.51161734945129, −9.825529546585484, −9.346258494154923, −9.094308121281845, −8.427327656014403, −7.872860177663876, −7.507068471831550, −7.080849419272109, −6.649935002852135, −6.098944032482591, −5.409727635598801, −4.856833571102004, −4.627632918377963, −4.041649871475037, −3.512411604657764, −2.752839028677400, −2.632778506210453, −2.015119513851518, −1.171444169360268, −0.4667239371399511, 0.4667239371399511, 1.171444169360268, 2.015119513851518, 2.632778506210453, 2.752839028677400, 3.512411604657764, 4.041649871475037, 4.627632918377963, 4.856833571102004, 5.409727635598801, 6.098944032482591, 6.649935002852135, 7.080849419272109, 7.507068471831550, 7.872860177663876, 8.427327656014403, 9.094308121281845, 9.346258494154923, 9.825529546585484, 10.51161734945129, 10.89092566313574, 11.36710158120366, 11.73057712509791, 12.29733239856969, 12.71286075087317

Graph of the $Z$-function along the critical line