Properties

Label 2-3168-1.1-c1-0-15
Degree $2$
Conductor $3168$
Sign $1$
Analytic cond. $25.2966$
Root an. cond. $5.02957$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 11-s + 4·13-s + 2·17-s − 2·23-s − 5·25-s + 2·29-s + 4·31-s + 6·37-s + 6·41-s + 12·43-s − 6·47-s − 3·49-s − 4·67-s − 10·71-s + 2·73-s − 2·77-s − 2·79-s − 4·83-s + 14·89-s + 8·91-s − 2·97-s + 10·101-s − 8·103-s + 4·107-s + 20·109-s + 14·113-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.301·11-s + 1.10·13-s + 0.485·17-s − 0.417·23-s − 25-s + 0.371·29-s + 0.718·31-s + 0.986·37-s + 0.937·41-s + 1.82·43-s − 0.875·47-s − 3/7·49-s − 0.488·67-s − 1.18·71-s + 0.234·73-s − 0.227·77-s − 0.225·79-s − 0.439·83-s + 1.48·89-s + 0.838·91-s − 0.203·97-s + 0.995·101-s − 0.788·103-s + 0.386·107-s + 1.91·109-s + 1.31·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3168\)    =    \(2^{5} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(25.2966\)
Root analytic conductor: \(5.02957\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.162950363\)
\(L(\frac12)\) \(\approx\) \(2.162950363\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.539229320199990255953113353535, −7.946924210891244364126307750805, −7.39938134101451624136393934258, −6.17158997235851069613217629810, −5.82427774140814655002360334367, −4.72985157824507529825380135842, −4.06987624784385777482324026631, −3.06286335678909796832639839808, −1.98827265692693803354483679246, −0.929541519182740551444742608914, 0.929541519182740551444742608914, 1.98827265692693803354483679246, 3.06286335678909796832639839808, 4.06987624784385777482324026631, 4.72985157824507529825380135842, 5.82427774140814655002360334367, 6.17158997235851069613217629810, 7.39938134101451624136393934258, 7.946924210891244364126307750805, 8.539229320199990255953113353535

Graph of the $Z$-function along the critical line