Properties

Label 2-309680-1.1-c1-0-22
Degree $2$
Conductor $309680$
Sign $1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·9-s − 3·11-s + 5·13-s − 15-s − 3·17-s + 4·19-s + 2·23-s + 25-s + 5·27-s + 2·29-s − 31-s + 3·33-s + 37-s − 5·39-s + 6·41-s + 8·43-s − 2·45-s − 4·47-s + 3·51-s + 9·53-s − 3·55-s − 4·57-s − 13·59-s + 4·61-s + 5·65-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 2/3·9-s − 0.904·11-s + 1.38·13-s − 0.258·15-s − 0.727·17-s + 0.917·19-s + 0.417·23-s + 1/5·25-s + 0.962·27-s + 0.371·29-s − 0.179·31-s + 0.522·33-s + 0.164·37-s − 0.800·39-s + 0.937·41-s + 1.21·43-s − 0.298·45-s − 0.583·47-s + 0.420·51-s + 1.23·53-s − 0.404·55-s − 0.529·57-s − 1.69·59-s + 0.512·61-s + 0.620·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.261023827\)
\(L(\frac12)\) \(\approx\) \(2.261023827\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 13 T + p T^{2} \) 1.59.n
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 + 16 T + p T^{2} \) 1.73.q
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.64401993156228, −12.23593629455160, −11.57037844079551, −11.23998112303947, −10.96575916554228, −10.32597080751124, −10.21121656913878, −9.282316445834272, −8.997893495023490, −8.645426832981008, −8.006827885634583, −7.564983537441427, −7.042965655737113, −6.332146704023004, −6.115948939463151, −5.537306310422191, −5.312504661105322, −4.549312596657830, −4.205529649787650, −3.280990212625933, −2.998921480729723, −2.397942481177921, −1.708434393158693, −0.9697773270753119, −0.4865967281481587, 0.4865967281481587, 0.9697773270753119, 1.708434393158693, 2.397942481177921, 2.998921480729723, 3.280990212625933, 4.205529649787650, 4.549312596657830, 5.312504661105322, 5.537306310422191, 6.115948939463151, 6.332146704023004, 7.042965655737113, 7.564983537441427, 8.006827885634583, 8.645426832981008, 8.997893495023490, 9.282316445834272, 10.21121656913878, 10.32597080751124, 10.96575916554228, 11.23998112303947, 11.57037844079551, 12.23593629455160, 12.64401993156228

Graph of the $Z$-function along the critical line