Properties

Label 2-3060-1.1-c1-0-8
Degree $2$
Conductor $3060$
Sign $1$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 6·11-s + 2·13-s + 17-s − 8·19-s + 4·23-s + 25-s − 6·29-s + 10·31-s − 6·37-s + 10·41-s − 2·43-s + 6·47-s − 7·49-s + 10·53-s − 6·55-s + 2·61-s − 2·65-s − 10·67-s − 14·71-s − 6·73-s + 10·79-s + 14·83-s − 85-s + 10·89-s + 8·95-s + 14·97-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.80·11-s + 0.554·13-s + 0.242·17-s − 1.83·19-s + 0.834·23-s + 1/5·25-s − 1.11·29-s + 1.79·31-s − 0.986·37-s + 1.56·41-s − 0.304·43-s + 0.875·47-s − 49-s + 1.37·53-s − 0.809·55-s + 0.256·61-s − 0.248·65-s − 1.22·67-s − 1.66·71-s − 0.702·73-s + 1.12·79-s + 1.53·83-s − 0.108·85-s + 1.05·89-s + 0.820·95-s + 1.42·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.894749373\)
\(L(\frac12)\) \(\approx\) \(1.894749373\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.900235850631111027856282739430, −8.040168400327605493833745110075, −7.10988674697168939663002572067, −6.46263712186345460804680945638, −5.87246175426078544956440123866, −4.57218762580994756696168648294, −4.06532761343116357519759891561, −3.24152080236141607595812306677, −1.96480032138734346021133671302, −0.870521071927731545118184019200, 0.870521071927731545118184019200, 1.96480032138734346021133671302, 3.24152080236141607595812306677, 4.06532761343116357519759891561, 4.57218762580994756696168648294, 5.87246175426078544956440123866, 6.46263712186345460804680945638, 7.10988674697168939663002572067, 8.040168400327605493833745110075, 8.900235850631111027856282739430

Graph of the $Z$-function along the critical line