Properties

Label 2-3060-1.1-c1-0-27
Degree $2$
Conductor $3060$
Sign $-1$
Analytic cond. $24.4342$
Root an. cond. $4.94309$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 7-s + 11-s − 17-s − 3·19-s − 6·23-s + 25-s − 9·29-s − 35-s − 11·37-s + 3·41-s + 6·43-s + 7·47-s − 6·49-s + 9·53-s + 55-s − 14·61-s + 10·67-s − 9·73-s − 77-s − 12·79-s + 12·83-s − 85-s − 3·95-s − 2·97-s − 12·101-s − 20·103-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.377·7-s + 0.301·11-s − 0.242·17-s − 0.688·19-s − 1.25·23-s + 1/5·25-s − 1.67·29-s − 0.169·35-s − 1.80·37-s + 0.468·41-s + 0.914·43-s + 1.02·47-s − 6/7·49-s + 1.23·53-s + 0.134·55-s − 1.79·61-s + 1.22·67-s − 1.05·73-s − 0.113·77-s − 1.35·79-s + 1.31·83-s − 0.108·85-s − 0.307·95-s − 0.203·97-s − 1.19·101-s − 1.97·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3060 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3060\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 17\)
Sign: $-1$
Analytic conductor: \(24.4342\)
Root analytic conductor: \(4.94309\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3060,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 11 T + p T^{2} \) 1.37.l
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 9 T + p T^{2} \) 1.73.j
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.436747013224243973060129977159, −7.52171020707464993122242596659, −6.80775206465008486677025510783, −6.00586400290455266400029347819, −5.44813782080822773207079654486, −4.29805329061079409516906706806, −3.64122741659346746001000983253, −2.47600312940741915973151478205, −1.62205257101609375007641715773, 0, 1.62205257101609375007641715773, 2.47600312940741915973151478205, 3.64122741659346746001000983253, 4.29805329061079409516906706806, 5.44813782080822773207079654486, 6.00586400290455266400029347819, 6.80775206465008486677025510783, 7.52171020707464993122242596659, 8.436747013224243973060129977159

Graph of the $Z$-function along the critical line