Properties

Label 2-30420-1.1-c1-0-7
Degree $2$
Conductor $30420$
Sign $-1$
Analytic cond. $242.904$
Root an. cond. $15.5854$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s − 5·7-s − 5·11-s + 17-s + 3·19-s − 3·23-s + 25-s + 29-s + 5·35-s − 7·37-s − 5·41-s + 5·43-s + 12·47-s + 18·49-s − 2·53-s + 5·55-s − 11·59-s − 13·61-s − 3·67-s + 13·71-s + 2·73-s + 25·77-s − 4·79-s + 12·83-s − 85-s + 7·89-s − 3·95-s + ⋯
L(s)  = 1  − 0.447·5-s − 1.88·7-s − 1.50·11-s + 0.242·17-s + 0.688·19-s − 0.625·23-s + 1/5·25-s + 0.185·29-s + 0.845·35-s − 1.15·37-s − 0.780·41-s + 0.762·43-s + 1.75·47-s + 18/7·49-s − 0.274·53-s + 0.674·55-s − 1.43·59-s − 1.66·61-s − 0.366·67-s + 1.54·71-s + 0.234·73-s + 2.84·77-s − 0.450·79-s + 1.31·83-s − 0.108·85-s + 0.741·89-s − 0.307·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 30420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 30420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(30420\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(242.904\)
Root analytic conductor: \(15.5854\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 30420,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 11 T + p T^{2} \) 1.59.l
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - 13 T + p T^{2} \) 1.71.an
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.48240765259828, −15.18986167297631, −14.11643477129164, −13.70066238136261, −13.33359344278700, −12.61491599534378, −12.29158602451798, −11.93616390804848, −10.87808277594902, −10.51440237014006, −10.11095559108905, −9.385216319009909, −9.080860951477840, −8.198682714790579, −7.674655856465492, −7.181568038290319, −6.559304827189664, −5.891784196585304, −5.446171369405011, −4.672649462335357, −3.861805274645379, −3.209861953088509, −2.881631211835971, −2.025826280236902, −0.7042592455587949, 0, 0.7042592455587949, 2.025826280236902, 2.881631211835971, 3.209861953088509, 3.861805274645379, 4.672649462335357, 5.446171369405011, 5.891784196585304, 6.559304827189664, 7.181568038290319, 7.674655856465492, 8.198682714790579, 9.080860951477840, 9.385216319009909, 10.11095559108905, 10.51440237014006, 10.87808277594902, 11.93616390804848, 12.29158602451798, 12.61491599534378, 13.33359344278700, 13.70066238136261, 14.11643477129164, 15.18986167297631, 15.48240765259828

Graph of the $Z$-function along the critical line