Properties

Label 2-296208-1.1-c1-0-134
Degree $2$
Conductor $296208$
Sign $-1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·7-s + 6·13-s + 17-s + 2·19-s + 4·23-s − 25-s − 4·29-s − 2·31-s − 8·35-s + 9·37-s − 5·41-s − 4·43-s − 6·47-s + 9·49-s − 9·53-s + 11·59-s + 11·61-s − 12·65-s − 2·67-s + 3·71-s − 12·73-s + 8·79-s + 11·83-s − 2·85-s + 2·89-s + 24·91-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.51·7-s + 1.66·13-s + 0.242·17-s + 0.458·19-s + 0.834·23-s − 1/5·25-s − 0.742·29-s − 0.359·31-s − 1.35·35-s + 1.47·37-s − 0.780·41-s − 0.609·43-s − 0.875·47-s + 9/7·49-s − 1.23·53-s + 1.43·59-s + 1.40·61-s − 1.48·65-s − 0.244·67-s + 0.356·71-s − 1.40·73-s + 0.900·79-s + 1.20·83-s − 0.216·85-s + 0.211·89-s + 2.51·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 11 T + p T^{2} \) 1.59.al
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08545836703341, −12.37610019462588, −11.73964603059980, −11.53573746575649, −11.20390471637043, −10.85298864324769, −10.34941869171385, −9.629173039527894, −9.178067154835182, −8.626463069969612, −8.214677058144415, −7.811799048997322, −7.662414760152792, −6.742762096008492, −6.546040071505351, −5.677178799115172, −5.305614876064287, −4.892429402573875, −4.152694989099792, −3.877139347777303, −3.373168171267687, −2.704428256188176, −1.904842510017521, −1.339833827605425, −0.9663133378199315, 0, 0.9663133378199315, 1.339833827605425, 1.904842510017521, 2.704428256188176, 3.373168171267687, 3.877139347777303, 4.152694989099792, 4.892429402573875, 5.305614876064287, 5.677178799115172, 6.546040071505351, 6.742762096008492, 7.662414760152792, 7.811799048997322, 8.214677058144415, 8.626463069969612, 9.178067154835182, 9.629173039527894, 10.34941869171385, 10.85298864324769, 11.20390471637043, 11.53573746575649, 11.73964603059980, 12.37610019462588, 13.08545836703341

Graph of the $Z$-function along the critical line