Properties

Label 2-295659-1.1-c1-0-42
Degree $2$
Conductor $295659$
Sign $1$
Analytic cond. $2360.84$
Root an. cond. $48.5885$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·5-s − 7-s + 11-s − 13-s + 4·16-s − 2·17-s + 4·20-s + 4·23-s − 25-s + 2·28-s − 9·29-s + 2·31-s + 2·35-s + 9·37-s + 7·41-s − 5·43-s − 2·44-s + 10·47-s + 49-s + 2·52-s − 9·53-s − 2·55-s − 4·59-s − 2·61-s − 8·64-s + 2·65-s + ⋯
L(s)  = 1  − 4-s − 0.894·5-s − 0.377·7-s + 0.301·11-s − 0.277·13-s + 16-s − 0.485·17-s + 0.894·20-s + 0.834·23-s − 1/5·25-s + 0.377·28-s − 1.67·29-s + 0.359·31-s + 0.338·35-s + 1.47·37-s + 1.09·41-s − 0.762·43-s − 0.301·44-s + 1.45·47-s + 1/7·49-s + 0.277·52-s − 1.23·53-s − 0.269·55-s − 0.520·59-s − 0.256·61-s − 64-s + 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 295659 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(295659\)    =    \(3^{2} \cdot 7 \cdot 13 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(2360.84\)
Root analytic conductor: \(48.5885\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 295659,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
19 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 9 T + p T^{2} \) 1.37.aj
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13153652817093, −12.76745937897756, −12.29782849331629, −11.80908238529860, −11.34469461055961, −10.92360987235764, −10.44369278664052, −9.757072132507051, −9.456571020617996, −9.013814038985537, −8.673882457245285, −8.002514952011950, −7.529381360709509, −7.385249656115032, −6.575362719789832, −6.040753873487696, −5.595971445218213, −4.999839585792486, −4.379487750230815, −4.121411479096243, −3.694765454999392, −2.955159632115530, −2.599377740646125, −1.552496994244083, −1.033442004649813, 0, 0, 1.033442004649813, 1.552496994244083, 2.599377740646125, 2.955159632115530, 3.694765454999392, 4.121411479096243, 4.379487750230815, 4.999839585792486, 5.595971445218213, 6.040753873487696, 6.575362719789832, 7.385249656115032, 7.529381360709509, 8.002514952011950, 8.673882457245285, 9.013814038985537, 9.456571020617996, 9.757072132507051, 10.44369278664052, 10.92360987235764, 11.34469461055961, 11.80908238529860, 12.29782849331629, 12.76745937897756, 13.13153652817093

Graph of the $Z$-function along the critical line