Properties

Label 2-293046-1.1-c1-0-42
Degree $2$
Conductor $293046$
Sign $-1$
Analytic cond. $2339.98$
Root an. cond. $48.3733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 3·5-s + 6-s + 8-s + 9-s − 3·10-s + 5·11-s + 12-s − 3·15-s + 16-s + 18-s − 8·19-s − 3·20-s + 5·22-s − 2·23-s + 24-s + 4·25-s + 27-s − 9·29-s − 3·30-s + 5·31-s + 32-s + 5·33-s + 36-s − 6·37-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 1.34·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.948·10-s + 1.50·11-s + 0.288·12-s − 0.774·15-s + 1/4·16-s + 0.235·18-s − 1.83·19-s − 0.670·20-s + 1.06·22-s − 0.417·23-s + 0.204·24-s + 4/5·25-s + 0.192·27-s − 1.67·29-s − 0.547·30-s + 0.898·31-s + 0.176·32-s + 0.870·33-s + 1/6·36-s − 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 293046 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(293046\)    =    \(2 \cdot 3 \cdot 13^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(2339.98\)
Root analytic conductor: \(48.3733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 293046,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
13 \( 1 \)
17 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 5 T + p T^{2} \) 1.11.af
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88774380927530, −12.38536289954222, −12.07263231408144, −11.76183154982914, −11.15309316600658, −10.80098857588855, −10.39533627237860, −9.500880056623128, −9.318892097815854, −8.659914261483106, −8.135707284221224, −8.003363118804756, −7.213821935226140, −6.893576915014313, −6.366976894494267, −6.044851034319214, −5.096118203897912, −4.735500442126232, −4.014712356422663, −3.742409027646487, −3.674737903944031, −2.765245210986517, −2.076700042895649, −1.687144346518683, −0.7987605990850253, 0, 0.7987605990850253, 1.687144346518683, 2.076700042895649, 2.765245210986517, 3.674737903944031, 3.742409027646487, 4.014712356422663, 4.735500442126232, 5.096118203897912, 6.044851034319214, 6.366976894494267, 6.893576915014313, 7.213821935226140, 8.003363118804756, 8.135707284221224, 8.659914261483106, 9.318892097815854, 9.500880056623128, 10.39533627237860, 10.80098857588855, 11.15309316600658, 11.76183154982914, 12.07263231408144, 12.38536289954222, 12.88774380927530

Graph of the $Z$-function along the critical line