Properties

Label 2-28665-1.1-c1-0-42
Degree $2$
Conductor $28665$
Sign $-1$
Analytic cond. $228.891$
Root an. cond. $15.1291$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 5-s − 2·10-s + 11-s + 13-s − 4·16-s − 17-s + 2·19-s + 2·20-s − 2·22-s + 3·23-s + 25-s − 2·26-s + 2·29-s + 6·31-s + 8·32-s + 2·34-s + 11·37-s − 4·38-s − 5·41-s + 4·43-s + 2·44-s − 6·46-s − 10·47-s − 2·50-s + 2·52-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.447·5-s − 0.632·10-s + 0.301·11-s + 0.277·13-s − 16-s − 0.242·17-s + 0.458·19-s + 0.447·20-s − 0.426·22-s + 0.625·23-s + 1/5·25-s − 0.392·26-s + 0.371·29-s + 1.07·31-s + 1.41·32-s + 0.342·34-s + 1.80·37-s − 0.648·38-s − 0.780·41-s + 0.609·43-s + 0.301·44-s − 0.884·46-s − 1.45·47-s − 0.282·50-s + 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28665\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(228.891\)
Root analytic conductor: \(15.1291\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 28665,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
11 \( 1 - T + p T^{2} \) 1.11.ab
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.75560632691115, −15.05162633374122, −14.39523574355589, −13.90578026979464, −13.29808716286294, −12.87887548729049, −12.10685625836223, −11.33976425325969, −11.18557019699735, −10.45852968394772, −9.809784303977874, −9.593856100144629, −9.005240309123335, −8.335101910039835, −8.030976675674588, −7.304046337183989, −6.632579220646870, −6.309596053638722, −5.415127606644635, −4.694075782972297, −4.114344915845229, −3.024220630417244, −2.510408555300152, −1.474211353926216, −1.100054703307495, 0, 1.100054703307495, 1.474211353926216, 2.510408555300152, 3.024220630417244, 4.114344915845229, 4.694075782972297, 5.415127606644635, 6.309596053638722, 6.632579220646870, 7.304046337183989, 8.030976675674588, 8.335101910039835, 9.005240309123335, 9.593856100144629, 9.809784303977874, 10.45852968394772, 11.18557019699735, 11.33976425325969, 12.10685625836223, 12.87887548729049, 13.29808716286294, 13.90578026979464, 14.39523574355589, 15.05162633374122, 15.75560632691115

Graph of the $Z$-function along the critical line