| L(s)  = 1 | − 2·2-s     + 2·4-s   + 5-s           − 2·10-s   + 11-s     + 13-s       − 4·16-s   − 17-s     + 2·19-s   + 2·20-s     − 2·22-s   + 3·23-s     + 25-s   − 2·26-s       + 2·29-s     + 6·31-s   + 8·32-s     + 2·34-s       + 11·37-s   − 4·38-s       − 5·41-s     + 4·43-s   + 2·44-s     − 6·46-s   − 10·47-s       − 2·50-s     + 2·52-s  + ⋯ | 
| L(s)  = 1 | − 1.41·2-s     + 4-s   + 0.447·5-s           − 0.632·10-s   + 0.301·11-s     + 0.277·13-s       − 16-s   − 0.242·17-s     + 0.458·19-s   + 0.447·20-s     − 0.426·22-s   + 0.625·23-s     + 1/5·25-s   − 0.392·26-s       + 0.371·29-s     + 1.07·31-s   + 1.41·32-s     + 0.342·34-s       + 1.80·37-s   − 0.648·38-s       − 0.780·41-s     + 0.609·43-s   + 0.301·44-s     − 0.884·46-s   − 1.45·47-s       − 0.282·50-s     + 0.277·52-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28665 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 3 | \( 1 \) |  | 
|  | 5 | \( 1 - T \) |  | 
|  | 7 | \( 1 \) |  | 
|  | 13 | \( 1 - T \) |  | 
| good | 2 | \( 1 + p T + p T^{2} \) | 1.2.c | 
|  | 11 | \( 1 - T + p T^{2} \) | 1.11.ab | 
|  | 17 | \( 1 + T + p T^{2} \) | 1.17.b | 
|  | 19 | \( 1 - 2 T + p T^{2} \) | 1.19.ac | 
|  | 23 | \( 1 - 3 T + p T^{2} \) | 1.23.ad | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 - 6 T + p T^{2} \) | 1.31.ag | 
|  | 37 | \( 1 - 11 T + p T^{2} \) | 1.37.al | 
|  | 41 | \( 1 + 5 T + p T^{2} \) | 1.41.f | 
|  | 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae | 
|  | 47 | \( 1 + 10 T + p T^{2} \) | 1.47.k | 
|  | 53 | \( 1 + 11 T + p T^{2} \) | 1.53.l | 
|  | 59 | \( 1 - 8 T + p T^{2} \) | 1.59.ai | 
|  | 61 | \( 1 + 13 T + p T^{2} \) | 1.61.n | 
|  | 67 | \( 1 - 12 T + p T^{2} \) | 1.67.am | 
|  | 71 | \( 1 - 5 T + p T^{2} \) | 1.71.af | 
|  | 73 | \( 1 + 10 T + p T^{2} \) | 1.73.k | 
|  | 79 | \( 1 + 3 T + p T^{2} \) | 1.79.d | 
|  | 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m | 
|  | 89 | \( 1 + 15 T + p T^{2} \) | 1.89.p | 
|  | 97 | \( 1 + 17 T + p T^{2} \) | 1.97.r | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−15.75560632691115, −15.05162633374122, −14.39523574355589, −13.90578026979464, −13.29808716286294, −12.87887548729049, −12.10685625836223, −11.33976425325969, −11.18557019699735, −10.45852968394772, −9.809784303977874, −9.593856100144629, −9.005240309123335, −8.335101910039835, −8.030976675674588, −7.304046337183989, −6.632579220646870, −6.309596053638722, −5.415127606644635, −4.694075782972297, −4.114344915845229, −3.024220630417244, −2.510408555300152, −1.474211353926216, −1.100054703307495, 0, 
1.100054703307495, 1.474211353926216, 2.510408555300152, 3.024220630417244, 4.114344915845229, 4.694075782972297, 5.415127606644635, 6.309596053638722, 6.632579220646870, 7.304046337183989, 8.030976675674588, 8.335101910039835, 9.005240309123335, 9.593856100144629, 9.809784303977874, 10.45852968394772, 11.18557019699735, 11.33976425325969, 12.10685625836223, 12.87887548729049, 13.29808716286294, 13.90578026979464, 14.39523574355589, 15.05162633374122, 15.75560632691115
