Properties

Label 2-281775-1.1-c1-0-16
Degree $2$
Conductor $281775$
Sign $1$
Analytic cond. $2249.98$
Root an. cond. $47.4340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 3-s + 2·4-s + 2·6-s + 7-s + 9-s + 6·11-s + 2·12-s − 13-s + 2·14-s − 4·16-s + 2·18-s − 4·19-s + 21-s + 12·22-s − 6·23-s − 2·26-s + 27-s + 2·28-s − 10·29-s − 4·31-s − 8·32-s + 6·33-s + 2·36-s − 7·37-s − 8·38-s − 39-s + ⋯
L(s)  = 1  + 1.41·2-s + 0.577·3-s + 4-s + 0.816·6-s + 0.377·7-s + 1/3·9-s + 1.80·11-s + 0.577·12-s − 0.277·13-s + 0.534·14-s − 16-s + 0.471·18-s − 0.917·19-s + 0.218·21-s + 2.55·22-s − 1.25·23-s − 0.392·26-s + 0.192·27-s + 0.377·28-s − 1.85·29-s − 0.718·31-s − 1.41·32-s + 1.04·33-s + 1/3·36-s − 1.15·37-s − 1.29·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 281775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(281775\)    =    \(3 \cdot 5^{2} \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(2249.98\)
Root analytic conductor: \(47.4340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 281775,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.289374275\)
\(L(\frac12)\) \(\approx\) \(6.289374275\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88067279604642, −12.39560938349015, −11.92704103904420, −11.46351750563101, −11.28461129656470, −10.51190869912246, −9.992148420550756, −9.431442793742514, −8.955929407518493, −8.731686816471434, −8.038867572192783, −7.480230465529395, −6.896854031328726, −6.619581948564515, −5.987653356350787, −5.623355005282105, −4.988169696804751, −4.480473763594052, −3.880176747802712, −3.738598729188355, −3.322243804432875, −2.257342947413820, −2.063379007116064, −1.519932464653816, −0.4625285168833327, 0.4625285168833327, 1.519932464653816, 2.063379007116064, 2.257342947413820, 3.322243804432875, 3.738598729188355, 3.880176747802712, 4.480473763594052, 4.988169696804751, 5.623355005282105, 5.987653356350787, 6.619581948564515, 6.896854031328726, 7.480230465529395, 8.038867572192783, 8.731686816471434, 8.955929407518493, 9.431442793742514, 9.992148420550756, 10.51190869912246, 11.28461129656470, 11.46351750563101, 11.92704103904420, 12.39560938349015, 12.88067279604642

Graph of the $Z$-function along the critical line