Properties

Label 2-280e2-1.1-c1-0-139
Degree $2$
Conductor $78400$
Sign $1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·9-s + 6·11-s + 4·13-s + 7·17-s + 4·19-s + 23-s + 6·29-s − 3·31-s − 4·37-s − 9·41-s + 8·43-s − 11·47-s − 4·53-s + 10·59-s − 2·61-s + 8·67-s − 3·71-s + 2·73-s − 17·79-s + 9·81-s + 2·83-s − 7·89-s − 97-s − 18·99-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 9-s + 1.80·11-s + 1.10·13-s + 1.69·17-s + 0.917·19-s + 0.208·23-s + 1.11·29-s − 0.538·31-s − 0.657·37-s − 1.40·41-s + 1.21·43-s − 1.60·47-s − 0.549·53-s + 1.30·59-s − 0.256·61-s + 0.977·67-s − 0.356·71-s + 0.234·73-s − 1.91·79-s + 81-s + 0.219·83-s − 0.741·89-s − 0.101·97-s − 1.80·99-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.516754625\)
\(L(\frac12)\) \(\approx\) \(3.516754625\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.01273377545151, −13.79279846921650, −13.01080358187037, −12.39921864433202, −11.93093662675764, −11.54415629469872, −11.25294461525684, −10.50679443999762, −9.918585479666589, −9.496056978998235, −8.911102919790627, −8.438795987668519, −8.109509523787328, −7.267874562364245, −6.796362792577124, −6.218230481768580, −5.740787891103083, −5.276318676410443, −4.542763605011333, −3.727153954347551, −3.374015454423693, −2.974713274596224, −1.816758779656928, −1.255596077141062, −0.6884952226076359, 0.6884952226076359, 1.255596077141062, 1.816758779656928, 2.974713274596224, 3.374015454423693, 3.727153954347551, 4.542763605011333, 5.276318676410443, 5.740787891103083, 6.218230481768580, 6.796362792577124, 7.267874562364245, 8.109509523787328, 8.438795987668519, 8.911102919790627, 9.496056978998235, 9.918585479666589, 10.50679443999762, 11.25294461525684, 11.54415629469872, 11.93093662675764, 12.39921864433202, 13.01080358187037, 13.79279846921650, 14.01273377545151

Graph of the $Z$-function along the critical line