Properties

Label 2-277970-1.1-c1-0-52
Degree $2$
Conductor $277970$
Sign $-1$
Analytic cond. $2219.60$
Root an. cond. $47.1126$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 5-s + 2·6-s + 7-s + 8-s + 9-s + 10-s − 11-s + 2·12-s − 2·13-s + 14-s + 2·15-s + 16-s − 3·17-s + 18-s + 20-s + 2·21-s − 22-s + 2·24-s + 25-s − 2·26-s − 4·27-s + 28-s − 3·29-s + 2·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s + 0.816·6-s + 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s + 0.577·12-s − 0.554·13-s + 0.267·14-s + 0.516·15-s + 1/4·16-s − 0.727·17-s + 0.235·18-s + 0.223·20-s + 0.436·21-s − 0.213·22-s + 0.408·24-s + 1/5·25-s − 0.392·26-s − 0.769·27-s + 0.188·28-s − 0.557·29-s + 0.365·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 277970 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 277970 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(277970\)    =    \(2 \cdot 5 \cdot 7 \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(2219.60\)
Root analytic conductor: \(47.1126\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 277970,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05676271454806, −12.57854959605685, −12.38815640405556, −11.54146018785318, −11.10645381187559, −10.90007240934838, −10.15349408568356, −9.703581304130695, −9.180205452049393, −8.953081311007244, −8.178096537888850, −7.943964844585924, −7.389554764297701, −6.921651197440620, −6.413869174666703, −5.681114962230454, −5.422737643916791, −4.787926992979624, −4.293384198274596, −3.698570524262465, −3.293860938959796, −2.563082582259070, −2.229910717371355, −1.878338478460743, −0.9988800890495596, 0, 0.9988800890495596, 1.878338478460743, 2.229910717371355, 2.563082582259070, 3.293860938959796, 3.698570524262465, 4.293384198274596, 4.787926992979624, 5.422737643916791, 5.681114962230454, 6.413869174666703, 6.921651197440620, 7.389554764297701, 7.943964844585924, 8.178096537888850, 8.953081311007244, 9.180205452049393, 9.703581304130695, 10.15349408568356, 10.90007240934838, 11.10645381187559, 11.54146018785318, 12.38815640405556, 12.57854959605685, 13.05676271454806

Graph of the $Z$-function along the critical line