Properties

Label 2-27378-1.1-c1-0-20
Degree $2$
Conductor $27378$
Sign $1$
Analytic cond. $218.614$
Root an. cond. $14.7856$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 7-s − 8-s + 10-s − 4·11-s − 14-s + 16-s − 7·17-s + 19-s − 20-s + 4·22-s − 3·23-s − 4·25-s + 28-s − 6·29-s − 7·31-s − 32-s + 7·34-s − 35-s + 37-s − 38-s + 40-s − 7·41-s − 5·43-s − 4·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s − 0.353·8-s + 0.316·10-s − 1.20·11-s − 0.267·14-s + 1/4·16-s − 1.69·17-s + 0.229·19-s − 0.223·20-s + 0.852·22-s − 0.625·23-s − 4/5·25-s + 0.188·28-s − 1.11·29-s − 1.25·31-s − 0.176·32-s + 1.20·34-s − 0.169·35-s + 0.164·37-s − 0.162·38-s + 0.158·40-s − 1.09·41-s − 0.762·43-s − 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27378\)    =    \(2 \cdot 3^{4} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(218.614\)
Root analytic conductor: \(14.7856\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 27378,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
13 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.91851961682505, −15.34467842042805, −14.89627315719587, −14.34225461725659, −13.47302560652864, −13.11173514927058, −12.68306439004167, −11.72088041337988, −11.37419182546815, −11.08421755822144, −10.26933049181908, −9.917463631625446, −9.200613978663960, −8.570516886701104, −8.133761872902042, −7.654157627192222, −7.007009802776275, −6.534486243043107, −5.546782392318258, −5.241581635667015, −4.306697980853075, −3.743669462999382, −2.865184946971425, −2.103275516122865, −1.598502154876255, 0, 0, 1.598502154876255, 2.103275516122865, 2.865184946971425, 3.743669462999382, 4.306697980853075, 5.241581635667015, 5.546782392318258, 6.534486243043107, 7.007009802776275, 7.654157627192222, 8.133761872902042, 8.570516886701104, 9.200613978663960, 9.917463631625446, 10.26933049181908, 11.08421755822144, 11.37419182546815, 11.72088041337988, 12.68306439004167, 13.11173514927058, 13.47302560652864, 14.34225461725659, 14.89627315719587, 15.34467842042805, 15.91851961682505

Graph of the $Z$-function along the critical line