| L(s) = 1 | + (1.72 − 0.993i)2-s + (−0.5 − 0.866i)3-s + (0.975 − 1.68i)4-s − 2.85i·5-s + (−1.72 − 0.993i)6-s + (−0.866 − 0.5i)7-s + 0.0979i·8-s + (−0.499 + 0.866i)9-s + (−2.83 − 4.91i)10-s + (−1.99 + 1.15i)11-s − 1.95·12-s + (3.55 − 0.620i)13-s − 1.98·14-s + (−2.47 + 1.42i)15-s + (2.04 + 3.54i)16-s + (1.26 − 2.18i)17-s + ⋯ |
| L(s) = 1 | + (1.21 − 0.702i)2-s + (−0.288 − 0.499i)3-s + (0.487 − 0.844i)4-s − 1.27i·5-s + (−0.702 − 0.405i)6-s + (−0.327 − 0.188i)7-s + 0.0346i·8-s + (−0.166 + 0.288i)9-s + (−0.896 − 1.55i)10-s + (−0.602 + 0.347i)11-s − 0.563·12-s + (0.985 − 0.172i)13-s − 0.531·14-s + (−0.637 + 0.368i)15-s + (0.512 + 0.886i)16-s + (0.306 − 0.530i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.355 + 0.934i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.355 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.16261 - 1.68601i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.16261 - 1.68601i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (-3.55 + 0.620i)T \) |
| good | 2 | \( 1 + (-1.72 + 0.993i)T + (1 - 1.73i)T^{2} \) |
| 5 | \( 1 + 2.85iT - 5T^{2} \) |
| 11 | \( 1 + (1.99 - 1.15i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.26 + 2.18i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.98 - 2.30i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.05 + 3.55i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.34 - 2.32i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.917iT - 31T^{2} \) |
| 37 | \( 1 + (-5.14 + 2.96i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (3.59 - 2.07i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.33 - 9.23i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 0.601iT - 47T^{2} \) |
| 53 | \( 1 - 1.41T + 53T^{2} \) |
| 59 | \( 1 + (4.22 + 2.43i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (6.72 - 11.6i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (12.3 - 7.14i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.6 - 6.15i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 10.8iT - 73T^{2} \) |
| 79 | \( 1 - 6.67T + 79T^{2} \) |
| 83 | \( 1 + 17.4iT - 83T^{2} \) |
| 89 | \( 1 + (9.36 - 5.40i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.46 - 2.57i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02854212766152039271082625260, −11.05766292714691165389981597892, −9.983085382734161959550880318185, −8.665314079859213489127677371097, −7.73030446634053093547610724728, −6.15024194586159821583773677317, −5.25719467262691477678159254767, −4.39748784442690455742335830359, −3.02866207562938846791269847982, −1.34155023466227341585228271325,
3.05453953878134623888870215124, 3.81430125949280635106310029079, 5.25963817651951677676932116595, 6.09445558465383114535799460825, 6.82990509931457157159292784104, 7.972265028943888722523881638482, 9.536048603432889651892371867996, 10.47316215605954370066812411832, 11.32334062714117957171093734538, 12.27805918800910841694198918707