Properties

Label 273.2.bd.a.127.7
Level $273$
Weight $2$
Character 273.127
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [273,2,Mod(43,273)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("273.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(273, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bd (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 22x^{14} + 187x^{12} + 774x^{10} + 1619x^{8} + 1618x^{6} + 690x^{4} + 96x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.7
Root \(-1.98765i\) of defining polynomial
Character \(\chi\) \(=\) 273.127
Dual form 273.2.bd.a.43.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72135 - 0.993824i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(0.975372 - 1.68939i) q^{4} -2.85284i q^{5} +(-1.72135 - 0.993824i) q^{6} +(-0.866025 - 0.500000i) q^{7} +0.0979034i q^{8} +(-0.500000 + 0.866025i) q^{9} +(-2.83522 - 4.91075i) q^{10} +(-1.99765 + 1.15335i) q^{11} -1.95074 q^{12} +(3.55173 - 0.620648i) q^{13} -1.98765 q^{14} +(-2.47063 + 1.42642i) q^{15} +(2.04804 + 3.54731i) q^{16} +(1.26358 - 2.18858i) q^{17} +1.98765i q^{18} +(3.98796 + 2.30245i) q^{19} +(-4.81957 - 2.78258i) q^{20} +1.00000i q^{21} +(-2.29245 + 3.97063i) q^{22} +(-2.05173 - 3.55370i) q^{23} +(0.0847868 - 0.0489517i) q^{24} -3.13870 q^{25} +(5.49697 - 4.59815i) q^{26} +1.00000 q^{27} +(-1.68939 + 0.975372i) q^{28} +(1.34038 + 2.32161i) q^{29} +(-2.83522 + 4.91075i) q^{30} +0.917134i q^{31} +(6.88124 + 3.97288i) q^{32} +(1.99765 + 1.15335i) q^{33} -5.02309i q^{34} +(-1.42642 + 2.47063i) q^{35} +(0.975372 + 1.68939i) q^{36} +(5.14175 - 2.96859i) q^{37} +9.15293 q^{38} +(-2.31336 - 2.76557i) q^{39} +0.279303 q^{40} +(-3.59587 + 2.07608i) q^{41} +(0.993824 + 1.72135i) q^{42} +(-5.33109 + 9.23371i) q^{43} +4.49977i q^{44} +(2.47063 + 1.42642i) q^{45} +(-7.06351 - 4.07812i) q^{46} +0.601438i q^{47} +(2.04804 - 3.54731i) q^{48} +(0.500000 + 0.866025i) q^{49} +(-5.40281 + 3.11932i) q^{50} -2.52716 q^{51} +(2.41574 - 6.60564i) q^{52} +1.41822 q^{53} +(1.72135 - 0.993824i) q^{54} +(3.29031 + 5.69899i) q^{55} +(0.0489517 - 0.0847868i) q^{56} -4.60490i q^{57} +(4.61455 + 2.66421i) q^{58} +(-4.22370 - 2.43855i) q^{59} +5.56516i q^{60} +(-6.72454 + 11.6472i) q^{61} +(0.911469 + 1.57871i) q^{62} +(0.866025 - 0.500000i) q^{63} +7.60122 q^{64} +(-1.77061 - 10.1325i) q^{65} +4.58489 q^{66} +(-12.3776 + 7.14624i) q^{67} +(-2.46492 - 4.26936i) q^{68} +(-2.05173 + 3.55370i) q^{69} +5.67044i q^{70} +(10.6572 + 6.15292i) q^{71} +(-0.0847868 - 0.0489517i) q^{72} -10.8999i q^{73} +(5.90052 - 10.2200i) q^{74} +(1.56935 + 2.71819i) q^{75} +(7.77950 - 4.49149i) q^{76} +2.30669 q^{77} +(-6.73060 - 2.46144i) q^{78} +6.67402 q^{79} +(10.1199 - 5.84274i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-4.12651 + 7.14733i) q^{82} -17.4987i q^{83} +(1.68939 + 0.975372i) q^{84} +(-6.24367 - 3.60479i) q^{85} +21.1926i q^{86} +(1.34038 - 2.32161i) q^{87} +(-0.112916 - 0.195577i) q^{88} +(-9.36923 + 5.40933i) q^{89} +5.67044 q^{90} +(-3.38621 - 1.23837i) q^{91} -8.00480 q^{92} +(0.794261 - 0.458567i) q^{93} +(0.597723 + 1.03529i) q^{94} +(6.56853 - 11.3770i) q^{95} -7.94577i q^{96} +(4.46293 + 2.57667i) q^{97} +(1.72135 + 0.993824i) q^{98} -2.30669i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{3} + 6 q^{4} - 8 q^{9} - 4 q^{10} - 12 q^{11} - 12 q^{12} + 4 q^{13} + 4 q^{14} - 10 q^{16} + 10 q^{17} + 6 q^{20} - 2 q^{22} - 2 q^{23} + 12 q^{25} + 20 q^{26} + 16 q^{27} + 12 q^{29} - 4 q^{30}+ \cdots - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.72135 0.993824i 1.21718 0.702740i 0.252867 0.967501i \(-0.418627\pi\)
0.964314 + 0.264761i \(0.0852932\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 0.975372 1.68939i 0.487686 0.844697i
\(5\) 2.85284i 1.27583i −0.770107 0.637915i \(-0.779797\pi\)
0.770107 0.637915i \(-0.220203\pi\)
\(6\) −1.72135 0.993824i −0.702740 0.405727i
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 0.0979034i 0.0346141i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −2.83522 4.91075i −0.896576 1.55291i
\(11\) −1.99765 + 1.15335i −0.602315 + 0.347747i −0.769952 0.638102i \(-0.779720\pi\)
0.167637 + 0.985849i \(0.446386\pi\)
\(12\) −1.95074 −0.563131
\(13\) 3.55173 0.620648i 0.985073 0.172137i
\(14\) −1.98765 −0.531221
\(15\) −2.47063 + 1.42642i −0.637915 + 0.368300i
\(16\) 2.04804 + 3.54731i 0.512011 + 0.886829i
\(17\) 1.26358 2.18858i 0.306463 0.530809i −0.671123 0.741346i \(-0.734188\pi\)
0.977586 + 0.210537i \(0.0675212\pi\)
\(18\) 1.98765i 0.468493i
\(19\) 3.98796 + 2.30245i 0.914902 + 0.528219i 0.882005 0.471240i \(-0.156193\pi\)
0.0328966 + 0.999459i \(0.489527\pi\)
\(20\) −4.81957 2.78258i −1.07769 0.622204i
\(21\) 1.00000i 0.218218i
\(22\) −2.29245 + 3.97063i −0.488751 + 0.846542i
\(23\) −2.05173 3.55370i −0.427815 0.740998i 0.568863 0.822432i \(-0.307383\pi\)
−0.996679 + 0.0814340i \(0.974050\pi\)
\(24\) 0.0847868 0.0489517i 0.0173070 0.00999222i
\(25\) −3.13870 −0.627740
\(26\) 5.49697 4.59815i 1.07804 0.901771i
\(27\) 1.00000 0.192450
\(28\) −1.68939 + 0.975372i −0.319265 + 0.184328i
\(29\) 1.34038 + 2.32161i 0.248903 + 0.431113i 0.963222 0.268708i \(-0.0865966\pi\)
−0.714319 + 0.699821i \(0.753263\pi\)
\(30\) −2.83522 + 4.91075i −0.517638 + 0.896576i
\(31\) 0.917134i 0.164722i 0.996603 + 0.0823610i \(0.0262461\pi\)
−0.996603 + 0.0823610i \(0.973754\pi\)
\(32\) 6.88124 + 3.97288i 1.21644 + 0.702313i
\(33\) 1.99765 + 1.15335i 0.347747 + 0.200772i
\(34\) 5.02309i 0.861454i
\(35\) −1.42642 + 2.47063i −0.241109 + 0.417613i
\(36\) 0.975372 + 1.68939i 0.162562 + 0.281566i
\(37\) 5.14175 2.96859i 0.845299 0.488034i −0.0137630 0.999905i \(-0.504381\pi\)
0.859062 + 0.511872i \(0.171048\pi\)
\(38\) 9.15293 1.48480
\(39\) −2.31336 2.76557i −0.370434 0.442845i
\(40\) 0.279303 0.0441616
\(41\) −3.59587 + 2.07608i −0.561581 + 0.324229i −0.753780 0.657127i \(-0.771771\pi\)
0.192199 + 0.981356i \(0.438438\pi\)
\(42\) 0.993824 + 1.72135i 0.153350 + 0.265611i
\(43\) −5.33109 + 9.23371i −0.812983 + 1.40813i 0.0977843 + 0.995208i \(0.468824\pi\)
−0.910767 + 0.412920i \(0.864509\pi\)
\(44\) 4.49977i 0.678365i
\(45\) 2.47063 + 1.42642i 0.368300 + 0.212638i
\(46\) −7.06351 4.07812i −1.04146 0.601286i
\(47\) 0.601438i 0.0877287i 0.999037 + 0.0438643i \(0.0139669\pi\)
−0.999037 + 0.0438643i \(0.986033\pi\)
\(48\) 2.04804 3.54731i 0.295610 0.512011i
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −5.40281 + 3.11932i −0.764073 + 0.441138i
\(51\) −2.52716 −0.353872
\(52\) 2.41574 6.60564i 0.335003 0.916037i
\(53\) 1.41822 0.194808 0.0974038 0.995245i \(-0.468946\pi\)
0.0974038 + 0.995245i \(0.468946\pi\)
\(54\) 1.72135 0.993824i 0.234247 0.135242i
\(55\) 3.29031 + 5.69899i 0.443666 + 0.768451i
\(56\) 0.0489517 0.0847868i 0.00654145 0.0113301i
\(57\) 4.60490i 0.609934i
\(58\) 4.61455 + 2.66421i 0.605920 + 0.349828i
\(59\) −4.22370 2.43855i −0.549879 0.317473i 0.199194 0.979960i \(-0.436168\pi\)
−0.749073 + 0.662487i \(0.769501\pi\)
\(60\) 5.56516i 0.718459i
\(61\) −6.72454 + 11.6472i −0.860989 + 1.49128i 0.00998547 + 0.999950i \(0.496821\pi\)
−0.870975 + 0.491327i \(0.836512\pi\)
\(62\) 0.911469 + 1.57871i 0.115757 + 0.200497i
\(63\) 0.866025 0.500000i 0.109109 0.0629941i
\(64\) 7.60122 0.950152
\(65\) −1.77061 10.1325i −0.219617 1.25678i
\(66\) 4.58489 0.564361
\(67\) −12.3776 + 7.14624i −1.51217 + 0.873052i −0.512271 + 0.858824i \(0.671196\pi\)
−0.999899 + 0.0142283i \(0.995471\pi\)
\(68\) −2.46492 4.26936i −0.298915 0.517736i
\(69\) −2.05173 + 3.55370i −0.246999 + 0.427815i
\(70\) 5.67044i 0.677748i
\(71\) 10.6572 + 6.15292i 1.26477 + 0.730217i 0.973994 0.226573i \(-0.0727521\pi\)
0.290779 + 0.956790i \(0.406085\pi\)
\(72\) −0.0847868 0.0489517i −0.00999222 0.00576901i
\(73\) 10.8999i 1.27573i −0.770146 0.637867i \(-0.779817\pi\)
0.770146 0.637867i \(-0.220183\pi\)
\(74\) 5.90052 10.2200i 0.685921 1.18805i
\(75\) 1.56935 + 2.71819i 0.181213 + 0.313870i
\(76\) 7.77950 4.49149i 0.892369 0.515210i
\(77\) 2.30669 0.262872
\(78\) −6.73060 2.46144i −0.762090 0.278703i
\(79\) 6.67402 0.750886 0.375443 0.926846i \(-0.377491\pi\)
0.375443 + 0.926846i \(0.377491\pi\)
\(80\) 10.1199 5.84274i 1.13144 0.653238i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −4.12651 + 7.14733i −0.455697 + 0.789290i
\(83\) 17.4987i 1.92073i −0.278742 0.960366i \(-0.589917\pi\)
0.278742 0.960366i \(-0.410083\pi\)
\(84\) 1.68939 + 0.975372i 0.184328 + 0.106422i
\(85\) −6.24367 3.60479i −0.677221 0.390994i
\(86\) 21.1926i 2.28526i
\(87\) 1.34038 2.32161i 0.143704 0.248903i
\(88\) −0.112916 0.195577i −0.0120369 0.0208486i
\(89\) −9.36923 + 5.40933i −0.993137 + 0.573388i −0.906210 0.422827i \(-0.861038\pi\)
−0.0869262 + 0.996215i \(0.527704\pi\)
\(90\) 5.67044 0.597717
\(91\) −3.38621 1.23837i −0.354972 0.129816i
\(92\) −8.00480 −0.834558
\(93\) 0.794261 0.458567i 0.0823610 0.0475512i
\(94\) 0.597723 + 1.03529i 0.0616504 + 0.106782i
\(95\) 6.56853 11.3770i 0.673917 1.16726i
\(96\) 7.94577i 0.810962i
\(97\) 4.46293 + 2.57667i 0.453142 + 0.261621i 0.709156 0.705052i \(-0.249076\pi\)
−0.256015 + 0.966673i \(0.582409\pi\)
\(98\) 1.72135 + 0.993824i 0.173883 + 0.100391i
\(99\) 2.30669i 0.231831i
\(100\) −3.06140 + 5.30250i −0.306140 + 0.530250i
\(101\) −5.91293 10.2415i −0.588358 1.01907i −0.994448 0.105233i \(-0.966441\pi\)
0.406089 0.913833i \(-0.366892\pi\)
\(102\) −4.35013 + 2.51155i −0.430727 + 0.248680i
\(103\) −18.1000 −1.78345 −0.891725 0.452578i \(-0.850504\pi\)
−0.891725 + 0.452578i \(0.850504\pi\)
\(104\) 0.0607635 + 0.347727i 0.00595835 + 0.0340974i
\(105\) 2.85284 0.278409
\(106\) 2.44126 1.40946i 0.237116 0.136899i
\(107\) 1.78333 + 3.08881i 0.172401 + 0.298607i 0.939259 0.343210i \(-0.111514\pi\)
−0.766858 + 0.641817i \(0.778181\pi\)
\(108\) 0.975372 1.68939i 0.0938552 0.162562i
\(109\) 11.5102i 1.10248i −0.834348 0.551238i \(-0.814155\pi\)
0.834348 0.551238i \(-0.185845\pi\)
\(110\) 11.3276 + 6.53998i 1.08004 + 0.623563i
\(111\) −5.14175 2.96859i −0.488034 0.281766i
\(112\) 4.09609i 0.387044i
\(113\) 1.02600 1.77708i 0.0965176 0.167173i −0.813723 0.581252i \(-0.802563\pi\)
0.910241 + 0.414079i \(0.135896\pi\)
\(114\) −4.57646 7.92667i −0.428625 0.742400i
\(115\) −10.1381 + 5.85326i −0.945387 + 0.545819i
\(116\) 5.22949 0.485546
\(117\) −1.23837 + 3.38621i −0.114487 + 0.313056i
\(118\) −9.69397 −0.892403
\(119\) −2.18858 + 1.26358i −0.200627 + 0.115832i
\(120\) −0.139651 0.241883i −0.0127484 0.0220808i
\(121\) −2.83959 + 4.91831i −0.258144 + 0.447119i
\(122\) 26.7320i 2.42021i
\(123\) 3.59587 + 2.07608i 0.324229 + 0.187194i
\(124\) 1.54940 + 0.894547i 0.139140 + 0.0803327i
\(125\) 5.30999i 0.474940i
\(126\) 0.993824 1.72135i 0.0885369 0.153350i
\(127\) 9.07892 + 15.7251i 0.805623 + 1.39538i 0.915869 + 0.401476i \(0.131503\pi\)
−0.110246 + 0.993904i \(0.535164\pi\)
\(128\) −0.678089 + 0.391495i −0.0599352 + 0.0346036i
\(129\) 10.6622 0.938752
\(130\) −13.1178 15.6820i −1.15051 1.37540i
\(131\) 1.96602 0.171772 0.0858860 0.996305i \(-0.472628\pi\)
0.0858860 + 0.996305i \(0.472628\pi\)
\(132\) 3.89691 2.24988i 0.339183 0.195827i
\(133\) −2.30245 3.98796i −0.199648 0.345800i
\(134\) −14.2042 + 24.6024i −1.22706 + 2.12532i
\(135\) 2.85284i 0.245533i
\(136\) 0.214269 + 0.123709i 0.0183735 + 0.0106079i
\(137\) 10.9997 + 6.35067i 0.939766 + 0.542574i 0.889887 0.456181i \(-0.150783\pi\)
0.0498793 + 0.998755i \(0.484116\pi\)
\(138\) 8.15624i 0.694305i
\(139\) 0.989648 1.71412i 0.0839409 0.145390i −0.820999 0.570930i \(-0.806583\pi\)
0.904939 + 0.425540i \(0.139916\pi\)
\(140\) 2.78258 + 4.81957i 0.235171 + 0.407328i
\(141\) 0.520860 0.300719i 0.0438643 0.0253251i
\(142\) 24.4597 2.05261
\(143\) −6.37931 + 5.33621i −0.533465 + 0.446237i
\(144\) −4.09609 −0.341340
\(145\) 6.62319 3.82390i 0.550026 0.317558i
\(146\) −10.8326 18.7625i −0.896509 1.55280i
\(147\) 0.500000 0.866025i 0.0412393 0.0714286i
\(148\) 11.5819i 0.952029i
\(149\) −20.3745 11.7632i −1.66914 0.963678i −0.968103 0.250554i \(-0.919387\pi\)
−0.701038 0.713124i \(-0.747279\pi\)
\(150\) 5.40281 + 3.11932i 0.441138 + 0.254691i
\(151\) 11.7828i 0.958872i 0.877577 + 0.479436i \(0.159159\pi\)
−0.877577 + 0.479436i \(0.840841\pi\)
\(152\) −0.225418 + 0.390435i −0.0182838 + 0.0316685i
\(153\) 1.26358 + 2.18858i 0.102154 + 0.176936i
\(154\) 3.97063 2.29245i 0.319963 0.184731i
\(155\) 2.61644 0.210157
\(156\) −6.92852 + 1.21073i −0.554725 + 0.0969356i
\(157\) −2.26601 −0.180848 −0.0904238 0.995903i \(-0.528822\pi\)
−0.0904238 + 0.995903i \(0.528822\pi\)
\(158\) 11.4883 6.63280i 0.913964 0.527677i
\(159\) −0.709110 1.22821i −0.0562361 0.0974038i
\(160\) 11.3340 19.6311i 0.896032 1.55197i
\(161\) 4.10346i 0.323398i
\(162\) −1.72135 0.993824i −0.135242 0.0780822i
\(163\) −14.9883 8.65350i −1.17397 0.677794i −0.219361 0.975644i \(-0.570397\pi\)
−0.954613 + 0.297850i \(0.903731\pi\)
\(164\) 8.09979i 0.632488i
\(165\) 3.29031 5.69899i 0.256150 0.443666i
\(166\) −17.3906 30.1215i −1.34977 2.33788i
\(167\) −12.8234 + 7.40357i −0.992301 + 0.572906i −0.905961 0.423360i \(-0.860850\pi\)
−0.0863400 + 0.996266i \(0.527517\pi\)
\(168\) −0.0979034 −0.00755341
\(169\) 12.2296 4.40875i 0.940738 0.339135i
\(170\) −14.3301 −1.09907
\(171\) −3.98796 + 2.30245i −0.304967 + 0.176073i
\(172\) 10.3996 + 18.0126i 0.792961 + 1.37345i
\(173\) 0.675104 1.16931i 0.0513272 0.0889013i −0.839220 0.543792i \(-0.816988\pi\)
0.890547 + 0.454890i \(0.150322\pi\)
\(174\) 5.32842i 0.403947i
\(175\) 2.71819 + 1.56935i 0.205476 + 0.118632i
\(176\) −8.18256 4.72420i −0.616784 0.356100i
\(177\) 4.87711i 0.366586i
\(178\) −10.7518 + 18.6227i −0.805884 + 1.39583i
\(179\) −2.41602 4.18467i −0.180582 0.312777i 0.761497 0.648168i \(-0.224465\pi\)
−0.942079 + 0.335392i \(0.891131\pi\)
\(180\) 4.81957 2.78258i 0.359230 0.207401i
\(181\) 17.8164 1.32429 0.662143 0.749378i \(-0.269647\pi\)
0.662143 + 0.749378i \(0.269647\pi\)
\(182\) −7.05959 + 1.23363i −0.523292 + 0.0914427i
\(183\) 13.4491 0.994185
\(184\) 0.347919 0.200871i 0.0256490 0.0148084i
\(185\) −8.46892 14.6686i −0.622647 1.07846i
\(186\) 0.911469 1.57871i 0.0668322 0.115757i
\(187\) 5.82937i 0.426286i
\(188\) 1.01607 + 0.586625i 0.0741042 + 0.0427841i
\(189\) −0.866025 0.500000i −0.0629941 0.0363696i
\(190\) 26.1118i 1.89435i
\(191\) −0.116212 + 0.201285i −0.00840879 + 0.0145645i −0.870199 0.492700i \(-0.836010\pi\)
0.861790 + 0.507265i \(0.169343\pi\)
\(192\) −3.80061 6.58285i −0.274285 0.475076i
\(193\) 22.3393 12.8976i 1.60802 0.928392i 0.618209 0.786014i \(-0.287859\pi\)
0.989812 0.142378i \(-0.0454748\pi\)
\(194\) 10.2430 0.735407
\(195\) −7.88972 + 6.59965i −0.564994 + 0.472611i
\(196\) 1.95074 0.139339
\(197\) 10.9075 6.29745i 0.777127 0.448674i −0.0582842 0.998300i \(-0.518563\pi\)
0.835411 + 0.549626i \(0.185230\pi\)
\(198\) −2.29245 3.97063i −0.162917 0.282181i
\(199\) −0.608439 + 1.05385i −0.0431311 + 0.0747052i −0.886785 0.462182i \(-0.847067\pi\)
0.843654 + 0.536887i \(0.180400\pi\)
\(200\) 0.307289i 0.0217286i
\(201\) 12.3776 + 7.14624i 0.873052 + 0.504057i
\(202\) −20.3565 11.7528i −1.43228 0.826925i
\(203\) 2.68077i 0.188153i
\(204\) −2.46492 + 4.26936i −0.172579 + 0.298915i
\(205\) 5.92272 + 10.2585i 0.413661 + 0.716481i
\(206\) −31.1566 + 17.9882i −2.17078 + 1.25330i
\(207\) 4.10346 0.285210
\(208\) 9.47573 + 11.3280i 0.657024 + 0.785455i
\(209\) −10.6221 −0.734746
\(210\) 4.91075 2.83522i 0.338874 0.195649i
\(211\) −0.997461 1.72765i −0.0686681 0.118937i 0.829647 0.558288i \(-0.188542\pi\)
−0.898315 + 0.439352i \(0.855208\pi\)
\(212\) 1.38329 2.39593i 0.0950049 0.164553i
\(213\) 12.3058i 0.843182i
\(214\) 6.13948 + 3.54463i 0.419686 + 0.242306i
\(215\) 26.3423 + 15.2087i 1.79653 + 1.03723i
\(216\) 0.0979034i 0.00666148i
\(217\) 0.458567 0.794261i 0.0311295 0.0539180i
\(218\) −11.4391 19.8131i −0.774754 1.34191i
\(219\) −9.43957 + 5.44994i −0.637867 + 0.368273i
\(220\) 12.8371 0.865478
\(221\) 3.12955 8.55749i 0.210516 0.575639i
\(222\) −11.8010 −0.792033
\(223\) 24.8533 14.3491i 1.66430 0.960884i 0.693675 0.720288i \(-0.255990\pi\)
0.970625 0.240597i \(-0.0773431\pi\)
\(224\) −3.97288 6.88124i −0.265450 0.459772i
\(225\) 1.56935 2.71819i 0.104623 0.181213i
\(226\) 4.07864i 0.271307i
\(227\) 7.20768 + 4.16136i 0.478390 + 0.276199i 0.719745 0.694238i \(-0.244258\pi\)
−0.241355 + 0.970437i \(0.577592\pi\)
\(228\) −7.77950 4.49149i −0.515210 0.297456i
\(229\) 1.24569i 0.0823173i −0.999153 0.0411587i \(-0.986895\pi\)
0.999153 0.0411587i \(-0.0131049\pi\)
\(230\) −11.6342 + 20.1511i −0.767138 + 1.32872i
\(231\) −1.15335 1.99765i −0.0758846 0.131436i
\(232\) −0.227294 + 0.131228i −0.0149226 + 0.00861555i
\(233\) −9.67623 −0.633911 −0.316955 0.948440i \(-0.602661\pi\)
−0.316955 + 0.948440i \(0.602661\pi\)
\(234\) 1.23363 + 7.05959i 0.0806449 + 0.461500i
\(235\) 1.71581 0.111927
\(236\) −8.23936 + 4.75700i −0.536336 + 0.309654i
\(237\) −3.33701 5.77987i −0.216762 0.375443i
\(238\) −2.51155 + 4.35013i −0.162799 + 0.281977i
\(239\) 7.45095i 0.481962i 0.970530 + 0.240981i \(0.0774691\pi\)
−0.970530 + 0.240981i \(0.922531\pi\)
\(240\) −10.1199 5.84274i −0.653238 0.377147i
\(241\) −10.2532 5.91970i −0.660468 0.381321i 0.131987 0.991251i \(-0.457864\pi\)
−0.792455 + 0.609930i \(0.791198\pi\)
\(242\) 11.2882i 0.725633i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 13.1179 + 22.7208i 0.839785 + 1.45455i
\(245\) 2.47063 1.42642i 0.157843 0.0911307i
\(246\) 8.25302 0.526194
\(247\) 15.5932 + 5.70257i 0.992171 + 0.362846i
\(248\) −0.0897905 −0.00570170
\(249\) −15.1543 + 8.74935i −0.960366 + 0.554468i
\(250\) −5.27720 9.14037i −0.333759 0.578088i
\(251\) −13.4680 + 23.3272i −0.850091 + 1.47240i 0.0310350 + 0.999518i \(0.490120\pi\)
−0.881126 + 0.472882i \(0.843214\pi\)
\(252\) 1.95074i 0.122885i
\(253\) 8.19730 + 4.73271i 0.515360 + 0.297543i
\(254\) 31.2560 + 18.0457i 1.96118 + 1.13229i
\(255\) 7.20957i 0.451481i
\(256\) −8.37937 + 14.5135i −0.523711 + 0.907094i
\(257\) 11.1196 + 19.2597i 0.693621 + 1.20139i 0.970643 + 0.240523i \(0.0773189\pi\)
−0.277023 + 0.960863i \(0.589348\pi\)
\(258\) 18.3534 10.5963i 1.14263 0.659698i
\(259\) −5.93718 −0.368919
\(260\) −18.8448 6.89172i −1.16871 0.427407i
\(261\) −2.68077 −0.165935
\(262\) 3.38422 1.95388i 0.209078 0.120711i
\(263\) −2.45030 4.24404i −0.151092 0.261699i 0.780537 0.625109i \(-0.214946\pi\)
−0.931629 + 0.363410i \(0.881612\pi\)
\(264\) −0.112916 + 0.195577i −0.00694953 + 0.0120369i
\(265\) 4.04596i 0.248541i
\(266\) −7.92667 4.57646i −0.486015 0.280601i
\(267\) 9.36923 + 5.40933i 0.573388 + 0.331046i
\(268\) 27.8810i 1.70310i
\(269\) −13.7048 + 23.7374i −0.835597 + 1.44730i 0.0579466 + 0.998320i \(0.481545\pi\)
−0.893544 + 0.448977i \(0.851789\pi\)
\(270\) −2.83522 4.91075i −0.172546 0.298859i
\(271\) 17.7004 10.2193i 1.07522 0.620781i 0.145620 0.989341i \(-0.453482\pi\)
0.929604 + 0.368559i \(0.120149\pi\)
\(272\) 10.3514 0.627648
\(273\) 0.620648 + 3.55173i 0.0375633 + 0.214961i
\(274\) 25.2458 1.52515
\(275\) 6.27004 3.62001i 0.378097 0.218295i
\(276\) 4.00240 + 6.93236i 0.240916 + 0.417279i
\(277\) −1.64527 + 2.84969i −0.0988548 + 0.171221i −0.911211 0.411940i \(-0.864851\pi\)
0.812356 + 0.583162i \(0.198185\pi\)
\(278\) 3.93414i 0.235954i
\(279\) −0.794261 0.458567i −0.0475512 0.0274537i
\(280\) −0.241883 0.139651i −0.0144553 0.00834577i
\(281\) 23.7022i 1.41395i −0.707236 0.706977i \(-0.750058\pi\)
0.707236 0.706977i \(-0.249942\pi\)
\(282\) 0.597723 1.03529i 0.0355939 0.0616504i
\(283\) 3.19561 + 5.53496i 0.189959 + 0.329019i 0.945236 0.326386i \(-0.105831\pi\)
−0.755277 + 0.655406i \(0.772498\pi\)
\(284\) 20.7894 12.0028i 1.23362 0.712234i
\(285\) −13.1371 −0.778172
\(286\) −5.67779 + 15.5254i −0.335735 + 0.918037i
\(287\) 4.15216 0.245094
\(288\) −6.88124 + 3.97288i −0.405481 + 0.234104i
\(289\) 5.30674 + 9.19155i 0.312161 + 0.540679i
\(290\) 7.60057 13.1646i 0.446321 0.773050i
\(291\) 5.15334i 0.302094i
\(292\) −18.4142 10.6314i −1.07761 0.622158i
\(293\) 19.0735 + 11.0121i 1.11429 + 0.643333i 0.939936 0.341350i \(-0.110884\pi\)
0.174350 + 0.984684i \(0.444218\pi\)
\(294\) 1.98765i 0.115922i
\(295\) −6.95681 + 12.0495i −0.405041 + 0.701551i
\(296\) 0.290635 + 0.503395i 0.0168928 + 0.0292592i
\(297\) −1.99765 + 1.15335i −0.115916 + 0.0669239i
\(298\) −46.7622 −2.70886
\(299\) −9.49279 11.3484i −0.548982 0.656294i
\(300\) 6.12280 0.353500
\(301\) 9.23371 5.33109i 0.532222 0.307279i
\(302\) 11.7100 + 20.2824i 0.673838 + 1.16712i
\(303\) −5.91293 + 10.2415i −0.339689 + 0.588358i
\(304\) 18.8621i 1.08181i
\(305\) 33.2277 + 19.1840i 1.90262 + 1.09848i
\(306\) 4.35013 + 2.51155i 0.248680 + 0.143576i
\(307\) 10.7195i 0.611797i 0.952064 + 0.305898i \(0.0989568\pi\)
−0.952064 + 0.305898i \(0.901043\pi\)
\(308\) 2.24988 3.89691i 0.128199 0.222047i
\(309\) 9.05002 + 15.6751i 0.514838 + 0.891725i
\(310\) 4.50381 2.60028i 0.255799 0.147686i
\(311\) −8.16438 −0.462960 −0.231480 0.972840i \(-0.574357\pi\)
−0.231480 + 0.972840i \(0.574357\pi\)
\(312\) 0.270758 0.226486i 0.0153287 0.0128222i
\(313\) −12.6727 −0.716304 −0.358152 0.933663i \(-0.616593\pi\)
−0.358152 + 0.933663i \(0.616593\pi\)
\(314\) −3.90061 + 2.25202i −0.220124 + 0.127089i
\(315\) −1.42642 2.47063i −0.0803697 0.139204i
\(316\) 6.50965 11.2750i 0.366197 0.634271i
\(317\) 1.58156i 0.0888291i 0.999013 + 0.0444146i \(0.0141423\pi\)
−0.999013 + 0.0444146i \(0.985858\pi\)
\(318\) −2.44126 1.40946i −0.136899 0.0790387i
\(319\) −5.35525 3.09185i −0.299836 0.173111i
\(320\) 21.6851i 1.21223i
\(321\) 1.78333 3.08881i 0.0995357 0.172401i
\(322\) 4.07812 + 7.06351i 0.227265 + 0.393634i
\(323\) 10.0782 5.81865i 0.560766 0.323758i
\(324\) −1.95074 −0.108375
\(325\) −11.1478 + 1.94803i −0.618370 + 0.108057i
\(326\) −34.4002 −1.90525
\(327\) −9.96812 + 5.75510i −0.551238 + 0.318258i
\(328\) −0.203255 0.352048i −0.0112229 0.0194386i
\(329\) 0.300719 0.520860i 0.0165792 0.0287160i
\(330\) 13.0800i 0.720028i
\(331\) −21.1631 12.2185i −1.16323 0.671592i −0.211155 0.977453i \(-0.567722\pi\)
−0.952076 + 0.305861i \(0.901056\pi\)
\(332\) −29.5622 17.0677i −1.62244 0.936714i
\(333\) 5.93718i 0.325356i
\(334\) −14.7157 + 25.4883i −0.805207 + 1.39466i
\(335\) 20.3871 + 35.3115i 1.11387 + 1.92927i
\(336\) −3.54731 + 2.04804i −0.193522 + 0.111730i
\(337\) −14.8194 −0.807266 −0.403633 0.914921i \(-0.632253\pi\)
−0.403633 + 0.914921i \(0.632253\pi\)
\(338\) 16.6699 19.7431i 0.906725 1.07388i
\(339\) −2.05199 −0.111449
\(340\) −12.1798 + 7.03201i −0.660543 + 0.381365i
\(341\) −1.05777 1.83212i −0.0572816 0.0992146i
\(342\) −4.57646 + 7.92667i −0.247467 + 0.428625i
\(343\) 1.00000i 0.0539949i
\(344\) −0.904012 0.521931i −0.0487410 0.0281407i
\(345\) 10.1381 + 5.85326i 0.545819 + 0.315129i
\(346\) 2.68374i 0.144279i
\(347\) 9.18756 15.9133i 0.493214 0.854272i −0.506755 0.862090i \(-0.669155\pi\)
0.999969 + 0.00781789i \(0.00248854\pi\)
\(348\) −2.61475 4.52887i −0.140165 0.242773i
\(349\) 9.69361 5.59661i 0.518887 0.299579i −0.217592 0.976040i \(-0.569820\pi\)
0.736479 + 0.676460i \(0.236487\pi\)
\(350\) 6.23863 0.333469
\(351\) 3.55173 0.620648i 0.189577 0.0331277i
\(352\) −18.3284 −0.976909
\(353\) 17.6126 10.1686i 0.937424 0.541222i 0.0482721 0.998834i \(-0.484629\pi\)
0.889152 + 0.457612i \(0.151295\pi\)
\(354\) 4.84699 + 8.39523i 0.257614 + 0.446201i
\(355\) 17.5533 30.4032i 0.931633 1.61364i
\(356\) 21.1044i 1.11853i
\(357\) 2.18858 + 1.26358i 0.115832 + 0.0668756i
\(358\) −8.31765 4.80220i −0.439601 0.253804i
\(359\) 5.14966i 0.271789i −0.990723 0.135894i \(-0.956609\pi\)
0.990723 0.135894i \(-0.0433908\pi\)
\(360\) −0.139651 + 0.241883i −0.00736027 + 0.0127484i
\(361\) 1.10257 + 1.90970i 0.0580299 + 0.100511i
\(362\) 30.6684 17.7064i 1.61190 0.930628i
\(363\) 5.67917 0.298079
\(364\) −5.39491 + 4.51278i −0.282770 + 0.236534i
\(365\) −31.0956 −1.62762
\(366\) 23.1506 13.3660i 1.21010 0.698653i
\(367\) −7.64529 13.2420i −0.399081 0.691228i 0.594532 0.804072i \(-0.297337\pi\)
−0.993613 + 0.112844i \(0.964004\pi\)
\(368\) 8.40406 14.5563i 0.438092 0.758798i
\(369\) 4.15216i 0.216153i
\(370\) −29.1560 16.8332i −1.51575 0.875118i
\(371\) −1.22821 0.709110i −0.0637657 0.0368152i
\(372\) 1.78909i 0.0927602i
\(373\) 8.54274 14.7965i 0.442326 0.766131i −0.555536 0.831493i \(-0.687487\pi\)
0.997862 + 0.0653615i \(0.0208200\pi\)
\(374\) 5.79337 + 10.0344i 0.299568 + 0.518867i
\(375\) −4.59859 + 2.65500i −0.237470 + 0.137103i
\(376\) −0.0588828 −0.00303665
\(377\) 6.20159 + 7.41384i 0.319398 + 0.381832i
\(378\) −1.98765 −0.102234
\(379\) −3.83043 + 2.21150i −0.196756 + 0.113597i −0.595142 0.803621i \(-0.702904\pi\)
0.398385 + 0.917218i \(0.369571\pi\)
\(380\) −12.8135 22.1937i −0.657320 1.13851i
\(381\) 9.07892 15.7251i 0.465127 0.805623i
\(382\) 0.461976i 0.0236368i
\(383\) 3.59163 + 2.07363i 0.183524 + 0.105957i 0.588947 0.808172i \(-0.299543\pi\)
−0.405424 + 0.914129i \(0.632876\pi\)
\(384\) 0.678089 + 0.391495i 0.0346036 + 0.0199784i
\(385\) 6.58062i 0.335380i
\(386\) 25.6359 44.4028i 1.30484 2.26004i
\(387\) −5.33109 9.23371i −0.270994 0.469376i
\(388\) 8.70603 5.02643i 0.441982 0.255178i
\(389\) −34.7497 −1.76188 −0.880940 0.473228i \(-0.843089\pi\)
−0.880940 + 0.473228i \(0.843089\pi\)
\(390\) −7.02210 + 19.2013i −0.355578 + 0.972297i
\(391\) −10.3701 −0.524438
\(392\) −0.0847868 + 0.0489517i −0.00428238 + 0.00247243i
\(393\) −0.983010 1.70262i −0.0495863 0.0858860i
\(394\) 12.5171 21.6803i 0.630603 1.09224i
\(395\) 19.0399i 0.958002i
\(396\) −3.89691 2.24988i −0.195827 0.113061i
\(397\) 7.19190 + 4.15224i 0.360951 + 0.208395i 0.669498 0.742814i \(-0.266509\pi\)
−0.308547 + 0.951209i \(0.599843\pi\)
\(398\) 2.41872i 0.121240i
\(399\) −2.30245 + 3.98796i −0.115267 + 0.199648i
\(400\) −6.42819 11.1340i −0.321410 0.556698i
\(401\) 30.7625 17.7607i 1.53620 0.886928i 0.537148 0.843488i \(-0.319502\pi\)
0.999056 0.0434398i \(-0.0138317\pi\)
\(402\) 28.4084 1.41688
\(403\) 0.569217 + 3.25741i 0.0283547 + 0.162263i
\(404\) −23.0692 −1.14774
\(405\) −2.47063 + 1.42642i −0.122767 + 0.0708794i
\(406\) −2.66421 4.61455i −0.132223 0.229016i
\(407\) −6.84763 + 11.8604i −0.339424 + 0.587900i
\(408\) 0.247417i 0.0122490i
\(409\) −0.987309 0.570023i −0.0488193 0.0281858i 0.475392 0.879774i \(-0.342306\pi\)
−0.524211 + 0.851588i \(0.675640\pi\)
\(410\) 20.3902 + 11.7723i 1.00700 + 0.581391i
\(411\) 12.7013i 0.626511i
\(412\) −17.6543 + 30.5781i −0.869763 + 1.50647i
\(413\) 2.43855 + 4.22370i 0.119993 + 0.207835i
\(414\) 7.06351 4.07812i 0.347152 0.200429i
\(415\) −49.9210 −2.45053
\(416\) 26.9061 + 9.83979i 1.31918 + 0.482436i
\(417\) −1.97930 −0.0969265
\(418\) −18.2844 + 10.5565i −0.894318 + 0.516335i
\(419\) −15.2618 26.4342i −0.745587 1.29139i −0.949920 0.312493i \(-0.898836\pi\)
0.204333 0.978901i \(-0.434497\pi\)
\(420\) 2.78258 4.81957i 0.135776 0.235171i
\(421\) 15.4138i 0.751223i 0.926777 + 0.375611i \(0.122567\pi\)
−0.926777 + 0.375611i \(0.877433\pi\)
\(422\) −3.43397 1.98260i −0.167163 0.0965115i
\(423\) −0.520860 0.300719i −0.0253251 0.0146214i
\(424\) 0.138849i 0.00674308i
\(425\) −3.96599 + 6.86930i −0.192379 + 0.333210i
\(426\) −12.2298 21.1827i −0.592538 1.02631i
\(427\) 11.6472 6.72454i 0.563650 0.325423i
\(428\) 6.95763 0.336310
\(429\) 7.81095 + 2.85654i 0.377116 + 0.137915i
\(430\) 60.4592 2.91560
\(431\) −11.7884 + 6.80604i −0.567828 + 0.327835i −0.756281 0.654247i \(-0.772986\pi\)
0.188454 + 0.982082i \(0.439652\pi\)
\(432\) 2.04804 + 3.54731i 0.0985365 + 0.170670i
\(433\) −11.8187 + 20.4706i −0.567969 + 0.983752i 0.428797 + 0.903401i \(0.358938\pi\)
−0.996767 + 0.0803512i \(0.974396\pi\)
\(434\) 1.82294i 0.0875039i
\(435\) −6.62319 3.82390i −0.317558 0.183342i
\(436\) −19.4453 11.2267i −0.931259 0.537663i
\(437\) 18.8960i 0.903920i
\(438\) −10.8326 + 18.7625i −0.517600 + 0.896509i
\(439\) −15.8359 27.4286i −0.755807 1.30910i −0.944972 0.327151i \(-0.893912\pi\)
0.189165 0.981945i \(-0.439422\pi\)
\(440\) −0.557950 + 0.322133i −0.0265992 + 0.0153571i
\(441\) −1.00000 −0.0476190
\(442\) −3.11757 17.8407i −0.148288 0.848595i
\(443\) 10.5318 0.500379 0.250190 0.968197i \(-0.419507\pi\)
0.250190 + 0.968197i \(0.419507\pi\)
\(444\) −10.0302 + 5.79096i −0.476014 + 0.274827i
\(445\) 15.4320 + 26.7289i 0.731545 + 1.26707i
\(446\) 28.5209 49.3996i 1.35050 2.33914i
\(447\) 23.5264i 1.11276i
\(448\) −6.58285 3.80061i −0.311010 0.179562i
\(449\) −12.9526 7.47819i −0.611271 0.352917i 0.162192 0.986759i \(-0.448144\pi\)
−0.773463 + 0.633842i \(0.781477\pi\)
\(450\) 6.23863i 0.294092i
\(451\) 4.78887 8.29457i 0.225499 0.390576i
\(452\) −2.00146 3.46662i −0.0941406 0.163056i
\(453\) 10.2042 5.89141i 0.479436 0.276803i
\(454\) 16.5426 0.776384
\(455\) −3.53287 + 9.66033i −0.165623 + 0.452883i
\(456\) 0.450836 0.0211123
\(457\) 11.4196 6.59314i 0.534189 0.308414i −0.208532 0.978016i \(-0.566868\pi\)
0.742720 + 0.669602i \(0.233535\pi\)
\(458\) −1.23799 2.14427i −0.0578476 0.100195i
\(459\) 1.26358 2.18858i 0.0589787 0.102154i
\(460\) 22.8364i 1.06475i
\(461\) −4.14734 2.39447i −0.193161 0.111522i 0.400301 0.916384i \(-0.368906\pi\)
−0.593462 + 0.804862i \(0.702239\pi\)
\(462\) −3.97063 2.29245i −0.184731 0.106654i
\(463\) 19.4696i 0.904827i 0.891808 + 0.452414i \(0.149437\pi\)
−0.891808 + 0.452414i \(0.850563\pi\)
\(464\) −5.49033 + 9.50953i −0.254882 + 0.441469i
\(465\) −1.30822 2.26590i −0.0606672 0.105079i
\(466\) −16.6562 + 9.61647i −0.771584 + 0.445474i
\(467\) −7.28924 −0.337306 −0.168653 0.985675i \(-0.553942\pi\)
−0.168653 + 0.985675i \(0.553942\pi\)
\(468\) 4.51278 + 5.39491i 0.208603 + 0.249380i
\(469\) 14.2925 0.659965
\(470\) 2.95351 1.70521i 0.136235 0.0786554i
\(471\) 1.13301 + 1.96243i 0.0522062 + 0.0904238i
\(472\) 0.238743 0.413515i 0.0109890 0.0190335i
\(473\) 24.5943i 1.13085i
\(474\) −11.4883 6.63280i −0.527677 0.304655i
\(475\) −12.5170 7.22671i −0.574320 0.331584i
\(476\) 4.92983i 0.225959i
\(477\) −0.709110 + 1.22821i −0.0324679 + 0.0562361i
\(478\) 7.40493 + 12.8257i 0.338694 + 0.586635i
\(479\) −10.6770 + 6.16437i −0.487844 + 0.281657i −0.723680 0.690136i \(-0.757551\pi\)
0.235835 + 0.971793i \(0.424217\pi\)
\(480\) −22.6680 −1.03465
\(481\) 16.4197 13.7349i 0.748673 0.626256i
\(482\) −23.5326 −1.07188
\(483\) 3.55370 2.05173i 0.161699 0.0933570i
\(484\) 5.53931 + 9.59436i 0.251787 + 0.436107i
\(485\) 7.35083 12.7320i 0.333784 0.578131i
\(486\) 1.98765i 0.0901615i
\(487\) 12.2957 + 7.09893i 0.557172 + 0.321683i 0.752010 0.659152i \(-0.229085\pi\)
−0.194838 + 0.980835i \(0.562418\pi\)
\(488\) −1.14031 0.658356i −0.0516192 0.0298024i
\(489\) 17.3070i 0.782649i
\(490\) 2.83522 4.91075i 0.128082 0.221845i
\(491\) 0.285751 + 0.494935i 0.0128957 + 0.0223361i 0.872401 0.488790i \(-0.162562\pi\)
−0.859506 + 0.511126i \(0.829228\pi\)
\(492\) 7.01463 4.04990i 0.316244 0.182583i
\(493\) 6.77472 0.305118
\(494\) 32.5087 5.68074i 1.46264 0.255589i
\(495\) −6.58062 −0.295777
\(496\) −3.25336 + 1.87833i −0.146080 + 0.0843395i
\(497\) −6.15292 10.6572i −0.275996 0.478040i
\(498\) −17.3906 + 30.1215i −0.779293 + 1.34977i
\(499\) 39.7298i 1.77855i −0.457375 0.889274i \(-0.651210\pi\)
0.457375 0.889274i \(-0.348790\pi\)
\(500\) −8.97067 5.17922i −0.401180 0.231622i
\(501\) 12.8234 + 7.40357i 0.572906 + 0.330767i
\(502\) 53.5392i 2.38957i
\(503\) 16.4237 28.4468i 0.732299 1.26838i −0.223600 0.974681i \(-0.571781\pi\)
0.955899 0.293697i \(-0.0948857\pi\)
\(504\) 0.0489517 + 0.0847868i 0.00218048 + 0.00377671i
\(505\) −29.2173 + 16.8686i −1.30015 + 0.750644i
\(506\) 18.8139 0.836381
\(507\) −9.93288 8.38676i −0.441135 0.372469i
\(508\) 35.4213 1.57157
\(509\) −33.2726 + 19.2100i −1.47478 + 0.851467i −0.999596 0.0284178i \(-0.990953\pi\)
−0.475188 + 0.879885i \(0.657620\pi\)
\(510\) 7.16504 + 12.4102i 0.317273 + 0.549534i
\(511\) −5.44994 + 9.43957i −0.241091 + 0.417582i
\(512\) 31.7445i 1.40292i
\(513\) 3.98796 + 2.30245i 0.176073 + 0.101656i
\(514\) 38.2815 + 22.1018i 1.68852 + 0.974870i
\(515\) 51.6365i 2.27538i
\(516\) 10.3996 18.0126i 0.457816 0.792961i
\(517\) −0.693666 1.20146i −0.0305074 0.0528403i
\(518\) −10.2200 + 5.90052i −0.449041 + 0.259254i
\(519\) −1.35021 −0.0592675
\(520\) 0.992008 0.173349i 0.0435024 0.00760184i
\(521\) −9.38277 −0.411067 −0.205533 0.978650i \(-0.565893\pi\)
−0.205533 + 0.978650i \(0.565893\pi\)
\(522\) −4.61455 + 2.66421i −0.201973 + 0.116609i
\(523\) 1.15233 + 1.99589i 0.0503878 + 0.0872741i 0.890119 0.455728i \(-0.150621\pi\)
−0.839731 + 0.543002i \(0.817288\pi\)
\(524\) 1.91760 3.32138i 0.0837708 0.145095i
\(525\) 3.13870i 0.136984i
\(526\) −8.43566 4.87033i −0.367812 0.212356i
\(527\) 2.00722 + 1.15887i 0.0874359 + 0.0504812i
\(528\) 9.44841i 0.411189i
\(529\) 3.08080 5.33611i 0.133948 0.232005i
\(530\) −4.02097 6.96452i −0.174660 0.302520i
\(531\) 4.22370 2.43855i 0.183293 0.105824i
\(532\) −8.98299 −0.389462
\(533\) −11.4831 + 9.60544i −0.497386 + 0.416058i
\(534\) 21.5037 0.930555
\(535\) 8.81190 5.08755i 0.380971 0.219954i
\(536\) −0.699641 1.21181i −0.0302199 0.0523424i
\(537\) −2.41602 + 4.18467i −0.104259 + 0.180582i
\(538\) 54.4807i 2.34883i
\(539\) −1.99765 1.15335i −0.0860450 0.0496781i
\(540\) −4.81957 2.78258i −0.207401 0.119743i
\(541\) 6.63606i 0.285307i 0.989773 + 0.142653i \(0.0455634\pi\)
−0.989773 + 0.142653i \(0.954437\pi\)
\(542\) 20.3125 35.1822i 0.872495 1.51121i
\(543\) −8.90822 15.4295i −0.382288 0.662143i
\(544\) 17.3900 10.0401i 0.745588 0.430466i
\(545\) −32.8368 −1.40657
\(546\) 4.59815 + 5.49697i 0.196783 + 0.235249i
\(547\) 4.37197 0.186932 0.0934660 0.995622i \(-0.470205\pi\)
0.0934660 + 0.995622i \(0.470205\pi\)
\(548\) 21.4576 12.3885i 0.916622 0.529212i
\(549\) −6.72454 11.6472i −0.286996 0.497093i
\(550\) 7.19530 12.4626i 0.306809 0.531408i
\(551\) 12.3447i 0.525901i
\(552\) −0.347919 0.200871i −0.0148084 0.00854965i
\(553\) −5.77987 3.33701i −0.245785 0.141904i
\(554\) 6.54044i 0.277877i
\(555\) −8.46892 + 14.6686i −0.359486 + 0.622647i
\(556\) −1.93055 3.34381i −0.0818736 0.141809i
\(557\) −22.4732 + 12.9749i −0.952218 + 0.549763i −0.893769 0.448527i \(-0.851949\pi\)
−0.0584488 + 0.998290i \(0.518615\pi\)
\(558\) −1.82294 −0.0771712
\(559\) −13.2037 + 36.1044i −0.558457 + 1.52705i
\(560\) −11.6855 −0.493802
\(561\) 5.04838 2.91468i 0.213143 0.123058i
\(562\) −23.5558 40.7999i −0.993642 1.72104i
\(563\) −12.5063 + 21.6615i −0.527078 + 0.912925i 0.472424 + 0.881371i \(0.343379\pi\)
−0.999502 + 0.0315540i \(0.989954\pi\)
\(564\) 1.17325i 0.0494028i
\(565\) −5.06972 2.92700i −0.213285 0.123140i
\(566\) 11.0015 + 6.35174i 0.462429 + 0.266984i
\(567\) 1.00000i 0.0419961i
\(568\) −0.602392 + 1.04337i −0.0252758 + 0.0437790i
\(569\) 8.74030 + 15.1386i 0.366413 + 0.634645i 0.989002 0.147904i \(-0.0472525\pi\)
−0.622589 + 0.782549i \(0.713919\pi\)
\(570\) −22.6135 + 13.0559i −0.947176 + 0.546852i
\(571\) −36.0126 −1.50708 −0.753539 0.657403i \(-0.771655\pi\)
−0.753539 + 0.657403i \(0.771655\pi\)
\(572\) 2.79277 + 15.9820i 0.116772 + 0.668239i
\(573\) 0.232424 0.00970964
\(574\) 7.14733 4.12651i 0.298324 0.172237i
\(575\) 6.43977 + 11.1540i 0.268557 + 0.465154i
\(576\) −3.80061 + 6.58285i −0.158359 + 0.274285i
\(577\) 25.7297i 1.07114i −0.844491 0.535571i \(-0.820097\pi\)
0.844491 0.535571i \(-0.179903\pi\)
\(578\) 18.2696 + 10.5479i 0.759914 + 0.438736i
\(579\) −22.3393 12.8976i −0.928392 0.536007i
\(580\) 14.9189i 0.619474i
\(581\) −8.74935 + 15.1543i −0.362984 + 0.628707i
\(582\) −5.12152 8.87073i −0.212294 0.367703i
\(583\) −2.83311 + 1.63570i −0.117336 + 0.0677437i
\(584\) 1.06714 0.0441584
\(585\) 9.66033 + 3.53287i 0.399405 + 0.146066i
\(586\) 43.7763 1.80838
\(587\) 7.40084 4.27288i 0.305465 0.176361i −0.339430 0.940631i \(-0.610234\pi\)
0.644896 + 0.764271i \(0.276901\pi\)
\(588\) −0.975372 1.68939i −0.0402237 0.0696694i
\(589\) −2.11166 + 3.65750i −0.0870093 + 0.150704i
\(590\) 27.6554i 1.13855i
\(591\) −10.9075 6.29745i −0.448674 0.259042i
\(592\) 21.0611 + 12.1596i 0.865604 + 0.499757i
\(593\) 3.34043i 0.137175i −0.997645 0.0685875i \(-0.978151\pi\)
0.997645 0.0685875i \(-0.0218492\pi\)
\(594\) −2.29245 + 3.97063i −0.0940602 + 0.162917i
\(595\) 3.60479 + 6.24367i 0.147782 + 0.255966i
\(596\) −39.7453 + 22.9470i −1.62803 + 0.939945i
\(597\) 1.21688 0.0498035
\(598\) −27.6188 10.1004i −1.12942 0.413037i
\(599\) 41.7075 1.70412 0.852062 0.523442i \(-0.175352\pi\)
0.852062 + 0.523442i \(0.175352\pi\)
\(600\) −0.266120 + 0.153645i −0.0108643 + 0.00627252i
\(601\) 0.301244 + 0.521769i 0.0122880 + 0.0212834i 0.872104 0.489321i \(-0.162755\pi\)
−0.859816 + 0.510604i \(0.829422\pi\)
\(602\) 10.5963 18.3534i 0.431874 0.748027i
\(603\) 14.2925i 0.582035i
\(604\) 19.9058 + 11.4926i 0.809956 + 0.467629i
\(605\) 14.0311 + 8.10089i 0.570447 + 0.329348i
\(606\) 23.5056i 0.954851i
\(607\) 8.28101 14.3431i 0.336116 0.582170i −0.647583 0.761995i \(-0.724220\pi\)
0.983699 + 0.179826i \(0.0575533\pi\)
\(608\) 18.2948 + 31.6874i 0.741950 + 1.28510i
\(609\) −2.32161 + 1.34038i −0.0940765 + 0.0543151i
\(610\) 76.2623 3.08777
\(611\) 0.373281 + 2.13614i 0.0151013 + 0.0864192i
\(612\) 4.92983 0.199277
\(613\) −1.64698 + 0.950882i −0.0665207 + 0.0384058i −0.532891 0.846184i \(-0.678895\pi\)
0.466371 + 0.884589i \(0.345561\pi\)
\(614\) 10.6533 + 18.4521i 0.429934 + 0.744667i
\(615\) 5.92272 10.2585i 0.238827 0.413661i
\(616\) 0.225833i 0.00909907i
\(617\) 15.7184 + 9.07500i 0.632797 + 0.365346i 0.781835 0.623486i \(-0.214284\pi\)
−0.149037 + 0.988832i \(0.547617\pi\)
\(618\) 31.1566 + 17.9882i 1.25330 + 0.723594i
\(619\) 10.0824i 0.405247i −0.979257 0.202624i \(-0.935053\pi\)
0.979257 0.202624i \(-0.0649468\pi\)
\(620\) 2.55200 4.42019i 0.102491 0.177519i
\(621\) −2.05173 3.55370i −0.0823331 0.142605i
\(622\) −14.0538 + 8.11396i −0.563506 + 0.325340i
\(623\) 10.8187 0.433440
\(624\) 5.07247 13.8702i 0.203061 0.555253i
\(625\) −30.8421 −1.23368
\(626\) −21.8142 + 12.5945i −0.871872 + 0.503375i
\(627\) 5.31105 + 9.19900i 0.212103 + 0.367373i
\(628\) −2.21021 + 3.82819i −0.0881969 + 0.152761i
\(629\) 15.0042i 0.598256i
\(630\) −4.91075 2.83522i −0.195649 0.112958i
\(631\) −27.3443 15.7872i −1.08856 0.628480i −0.155366 0.987857i \(-0.549656\pi\)
−0.933192 + 0.359377i \(0.882989\pi\)
\(632\) 0.653409i 0.0259912i
\(633\) −0.997461 + 1.72765i −0.0396455 + 0.0686681i
\(634\) 1.57179 + 2.72242i 0.0624238 + 0.108121i
\(635\) 44.8613 25.9007i 1.78027 1.02784i
\(636\) −2.76659 −0.109702
\(637\) 2.31336 + 2.76557i 0.0916588 + 0.109576i
\(638\) −12.2910 −0.486607
\(639\) −10.6572 + 6.15292i −0.421591 + 0.243406i
\(640\) 1.11687 + 1.93448i 0.0441483 + 0.0764670i
\(641\) −10.8705 + 18.8282i −0.429358 + 0.743669i −0.996816 0.0797326i \(-0.974593\pi\)
0.567459 + 0.823402i \(0.307927\pi\)
\(642\) 7.08926i 0.279791i
\(643\) −29.7903 17.1995i −1.17482 0.678280i −0.220006 0.975498i \(-0.570608\pi\)
−0.954810 + 0.297218i \(0.903941\pi\)
\(644\) 6.93236 + 4.00240i 0.273173 + 0.157717i
\(645\) 30.4175i 1.19769i
\(646\) 11.5654 20.0319i 0.455036 0.788145i
\(647\) 9.89812 + 17.1441i 0.389135 + 0.674002i 0.992333 0.123589i \(-0.0394405\pi\)
−0.603198 + 0.797591i \(0.706107\pi\)
\(648\) 0.0847868 0.0489517i 0.00333074 0.00192300i
\(649\) 11.2500 0.441601
\(650\) −17.2533 + 14.4322i −0.676732 + 0.566078i
\(651\) −0.917134 −0.0359453
\(652\) −29.2383 + 16.8808i −1.14506 + 0.661101i
\(653\) 1.83747 + 3.18260i 0.0719059 + 0.124545i 0.899737 0.436433i \(-0.143759\pi\)
−0.827831 + 0.560978i \(0.810425\pi\)
\(654\) −11.4391 + 19.8131i −0.447305 + 0.774754i
\(655\) 5.60874i 0.219152i
\(656\) −14.7290 8.50379i −0.575071 0.332017i
\(657\) 9.43957 + 5.44994i 0.368273 + 0.212622i
\(658\) 1.19545i 0.0466033i
\(659\) 21.3407 36.9633i 0.831317 1.43988i −0.0656764 0.997841i \(-0.520921\pi\)
0.896994 0.442043i \(-0.145746\pi\)
\(660\) −6.41856 11.1173i −0.249842 0.432739i
\(661\) −0.714640 + 0.412597i −0.0277963 + 0.0160482i −0.513834 0.857890i \(-0.671775\pi\)
0.486037 + 0.873938i \(0.338442\pi\)
\(662\) −48.5723 −1.88782
\(663\) −8.97578 + 1.56847i −0.348590 + 0.0609145i
\(664\) 1.71318 0.0664844
\(665\) −11.3770 + 6.56853i −0.441182 + 0.254717i
\(666\) 5.90052 + 10.2200i 0.228640 + 0.396017i
\(667\) 5.50021 9.52665i 0.212969 0.368873i
\(668\) 28.8849i 1.11759i
\(669\) −24.8533 14.3491i −0.960884 0.554767i
\(670\) 70.1867 + 40.5223i 2.71155 + 1.56551i
\(671\) 31.0229i 1.19763i
\(672\) −3.97288 + 6.88124i −0.153257 + 0.265450i
\(673\) −13.0183 22.5484i −0.501820 0.869177i −0.999998 0.00210260i \(-0.999331\pi\)
0.498178 0.867075i \(-0.334003\pi\)
\(674\) −25.5095 + 14.7279i −0.982589 + 0.567298i
\(675\) −3.13870 −0.120809
\(676\) 4.48029 24.9608i 0.172319 0.960030i
\(677\) −50.7000 −1.94856 −0.974280 0.225342i \(-0.927650\pi\)
−0.974280 + 0.225342i \(0.927650\pi\)
\(678\) −3.53220 + 2.03932i −0.135654 + 0.0783196i
\(679\) −2.57667 4.46293i −0.0988836 0.171271i
\(680\) 0.352921 0.611277i 0.0135339 0.0234414i
\(681\) 8.32271i 0.318927i
\(682\) −3.64160 2.10248i −0.139444 0.0805081i
\(683\) −9.14978 5.28263i −0.350107 0.202134i 0.314626 0.949216i \(-0.398121\pi\)
−0.664732 + 0.747082i \(0.731454\pi\)
\(684\) 8.98299i 0.343473i
\(685\) 18.1175 31.3803i 0.692232 1.19898i
\(686\) −0.993824 1.72135i −0.0379444 0.0657216i
\(687\) −1.07880 + 0.622843i −0.0411587 + 0.0237630i
\(688\) −43.6732 −1.66502
\(689\) 5.03714 0.880216i 0.191900 0.0335335i
\(690\) 23.2684 0.885815
\(691\) 44.7827 25.8553i 1.70361 0.983582i 0.761578 0.648074i \(-0.224425\pi\)
0.942037 0.335509i \(-0.108908\pi\)
\(692\) −1.31695 2.28103i −0.0500631 0.0867118i
\(693\) −1.15335 + 1.99765i −0.0438120 + 0.0758846i
\(694\) 36.5233i 1.38640i
\(695\) −4.89011 2.82331i −0.185493 0.107094i
\(696\) 0.227294 + 0.131228i 0.00861555 + 0.00497419i
\(697\) 10.4931i 0.397456i
\(698\) 11.1241 19.2675i 0.421053 0.729285i
\(699\) 4.83811 + 8.37986i 0.182994 + 0.316955i
\(700\) 5.30250 3.06140i 0.200416 0.115710i
\(701\) 47.4231 1.79115 0.895573 0.444915i \(-0.146766\pi\)
0.895573 + 0.444915i \(0.146766\pi\)
\(702\) 5.49697 4.59815i 0.207470 0.173546i
\(703\) 27.3402 1.03115
\(704\) −15.1846 + 8.76684i −0.572291 + 0.330413i
\(705\) −0.857903 1.48593i −0.0323105 0.0559634i
\(706\) 20.2117 35.0076i 0.760676 1.31753i
\(707\) 11.8259i 0.444757i
\(708\) 8.23936 + 4.75700i 0.309654 + 0.178779i
\(709\) −16.7276 9.65771i −0.628220 0.362703i 0.151843 0.988405i \(-0.451479\pi\)
−0.780062 + 0.625702i \(0.784813\pi\)
\(710\) 69.7796i 2.61878i
\(711\) −3.33701 + 5.77987i −0.125148 + 0.216762i
\(712\) −0.529592 0.917280i −0.0198473 0.0343765i
\(713\) 3.25922 1.88171i 0.122059 0.0704706i
\(714\) 5.02309 0.187985
\(715\) 15.2234 + 18.1992i 0.569322 + 0.680610i
\(716\) −9.42607 −0.352269
\(717\) 6.45271 3.72547i 0.240981 0.139130i
\(718\) −5.11785 8.86438i −0.190997 0.330816i
\(719\) −7.29982 + 12.6437i −0.272237 + 0.471529i −0.969434 0.245350i \(-0.921097\pi\)
0.697197 + 0.716880i \(0.254430\pi\)
\(720\) 11.6855i 0.435492i
\(721\) 15.6751 + 9.05002i 0.583771 + 0.337040i
\(722\) 3.79582 + 2.19152i 0.141266 + 0.0815598i
\(723\) 11.8394i 0.440312i
\(724\) 17.3777 30.0990i 0.645836 1.11862i
\(725\) −4.20706 7.28685i −0.156246 0.270627i
\(726\) 9.77586 5.64410i 0.362816 0.209472i
\(727\) 32.4357 1.20297 0.601487 0.798883i \(-0.294575\pi\)
0.601487 + 0.798883i \(0.294575\pi\)
\(728\) 0.121241 0.331522i 0.00449347 0.0122870i
\(729\) 1.00000 0.0370370
\(730\) −53.5266 + 30.9036i −1.98111 + 1.14379i
\(731\) 13.4725 + 23.3350i 0.498298 + 0.863077i
\(732\) 13.1179 22.7208i 0.484850 0.839785i
\(733\) 33.4061i 1.23388i 0.787009 + 0.616941i \(0.211628\pi\)
−0.787009 + 0.616941i \(0.788372\pi\)
\(734\) −26.3205 15.1961i −0.971507 0.560900i
\(735\) −2.47063 1.42642i −0.0911307 0.0526143i
\(736\) 32.6052i 1.20184i
\(737\) 16.4842 28.5514i 0.607202 1.05171i
\(738\) −4.12651 7.14733i −0.151899 0.263097i
\(739\) 36.0797 20.8306i 1.32721 0.766266i 0.342344 0.939575i \(-0.388779\pi\)
0.984868 + 0.173308i \(0.0554457\pi\)
\(740\) −33.0414 −1.21463
\(741\) −2.85802 16.3554i −0.104992 0.600830i
\(742\) −2.81892 −0.103486
\(743\) 2.27160 1.31151i 0.0833370 0.0481146i −0.457752 0.889080i \(-0.651345\pi\)
0.541089 + 0.840965i \(0.318012\pi\)
\(744\) 0.0448953 + 0.0777609i 0.00164594 + 0.00285085i
\(745\) −33.5585 + 58.1251i −1.22949 + 2.12954i
\(746\) 33.9599i 1.24336i
\(747\) 15.1543 + 8.74935i 0.554468 + 0.320122i
\(748\) 9.84810 + 5.68580i 0.360082 + 0.207894i
\(749\) 3.56666i 0.130323i
\(750\) −5.27720 + 9.14037i −0.192696 + 0.333759i
\(751\) 11.5544 + 20.0128i 0.421625 + 0.730276i 0.996099 0.0882471i \(-0.0281265\pi\)
−0.574474 + 0.818523i \(0.694793\pi\)
\(752\) −2.13349 + 1.23177i −0.0778003 + 0.0449180i
\(753\) 26.9359 0.981600
\(754\) 18.0432 + 6.59855i 0.657094 + 0.240305i
\(755\) 33.6145 1.22336
\(756\) −1.68939 + 0.975372i −0.0614427 + 0.0354739i
\(757\) 2.42554 + 4.20116i 0.0881578 + 0.152694i 0.906732 0.421706i \(-0.138569\pi\)
−0.818575 + 0.574400i \(0.805235\pi\)
\(758\) −4.39569 + 7.61355i −0.159659 + 0.276537i
\(759\) 9.46542i 0.343573i
\(760\) 1.11385 + 0.643081i 0.0404036 + 0.0233270i
\(761\) −27.2947 15.7586i −0.989431 0.571248i −0.0843267 0.996438i \(-0.526874\pi\)
−0.905104 + 0.425190i \(0.860207\pi\)
\(762\) 36.0914i 1.30745i
\(763\) −5.75510 + 9.96812i −0.208349 + 0.360870i
\(764\) 0.226700 + 0.392655i 0.00820170 + 0.0142058i
\(765\) 6.24367 3.60479i 0.225740 0.130331i
\(766\) 8.24328 0.297842
\(767\) −16.5149 6.03966i −0.596320 0.218079i
\(768\) 16.7587 0.604729
\(769\) −14.6361 + 8.45018i −0.527793 + 0.304721i −0.740117 0.672478i \(-0.765230\pi\)
0.212324 + 0.977199i \(0.431897\pi\)
\(770\) −6.53998 11.3276i −0.235685 0.408218i
\(771\) 11.1196 19.2597i 0.400462 0.693621i
\(772\) 50.3199i 1.81105i
\(773\) 23.0049 + 13.2819i 0.827429 + 0.477717i 0.852972 0.521957i \(-0.174798\pi\)
−0.0255424 + 0.999674i \(0.508131\pi\)
\(774\) −18.3534 10.5963i −0.659698 0.380877i
\(775\) 2.87861i 0.103403i
\(776\) −0.252265 + 0.436936i −0.00905578 + 0.0156851i
\(777\) 2.96859 + 5.14175i 0.106498 + 0.184459i
\(778\) −59.8165 + 34.5351i −2.14453 + 1.23814i
\(779\) −19.1203 −0.685055
\(780\) 3.45401 + 19.7660i 0.123673 + 0.707735i
\(781\) −28.3858 −1.01572
\(782\) −17.8506 + 10.3060i −0.638335 + 0.368543i
\(783\) 1.34038 + 2.32161i 0.0479014 + 0.0829677i
\(784\) −2.04804 + 3.54731i −0.0731444 + 0.126690i
\(785\) 6.46458i 0.230731i
\(786\) −3.38422 1.95388i −0.120711 0.0696925i
\(787\) −17.7808 10.2657i −0.633816 0.365934i 0.148412 0.988926i \(-0.452584\pi\)
−0.782228 + 0.622992i \(0.785917\pi\)
\(788\) 24.5694i 0.875249i
\(789\) −2.45030 + 4.24404i −0.0872329 + 0.151092i
\(790\) −18.9223 32.7744i −0.673226 1.16606i
\(791\) −1.77708 + 1.02600i −0.0631856 + 0.0364802i
\(792\) 0.225833 0.00802463
\(793\) −16.6549 + 45.5415i −0.591434 + 1.61723i
\(794\) 16.5064 0.585790
\(795\) −3.50390 + 2.02298i −0.124271 + 0.0717477i
\(796\) 1.18691 + 2.05579i 0.0420688 + 0.0728654i
\(797\) −23.4311 + 40.5838i −0.829971 + 1.43755i 0.0680885 + 0.997679i \(0.478310\pi\)
−0.898060 + 0.439873i \(0.855023\pi\)
\(798\) 9.15293i 0.324010i
\(799\) 1.31629 + 0.759963i 0.0465672 + 0.0268856i
\(800\) −21.5981 12.4697i −0.763610 0.440870i
\(801\) 10.8187i 0.382258i
\(802\) 35.3020 61.1449i 1.24656 2.15910i
\(803\) 12.5713 + 21.7742i 0.443633 + 0.768394i
\(804\) 24.1456 13.9405i 0.851550 0.491643i
\(805\) 11.7065 0.412601
\(806\) 4.21712 + 5.04146i 0.148542 + 0.177578i
\(807\) 27.4096 0.964864
\(808\) 1.00268 0.578895i 0.0352740 0.0203655i
\(809\) 20.2776 + 35.1218i 0.712922 + 1.23482i 0.963756 + 0.266787i \(0.0859620\pi\)
−0.250833 + 0.968030i \(0.580705\pi\)
\(810\) −2.83522 + 4.91075i −0.0996195 + 0.172546i
\(811\) 15.8829i 0.557724i −0.960331 0.278862i \(-0.910043\pi\)
0.960331 0.278862i \(-0.0899573\pi\)
\(812\) −4.52887 2.61475i −0.158932 0.0917596i
\(813\) −17.7004 10.2193i −0.620781 0.358408i
\(814\) 27.2213i 0.954108i
\(815\) −24.6870 + 42.7592i −0.864749 + 1.49779i
\(816\) −5.17572 8.96461i −0.181187 0.313824i
\(817\) −42.5204 + 24.5491i −1.48760 + 0.858866i
\(818\) −2.26601 −0.0792292
\(819\) 2.76557 2.31336i 0.0966367 0.0808354i
\(820\) 23.1074 0.806946
\(821\) −38.5951 + 22.2829i −1.34698 + 0.777678i −0.987820 0.155599i \(-0.950269\pi\)
−0.359157 + 0.933277i \(0.616936\pi\)
\(822\) −12.6229 21.8635i −0.440274 0.762577i
\(823\) −14.0512 + 24.3374i −0.489795 + 0.848350i −0.999931 0.0117441i \(-0.996262\pi\)
0.510136 + 0.860094i \(0.329595\pi\)
\(824\) 1.77205i 0.0617325i
\(825\) −6.27004 3.62001i −0.218295 0.126032i
\(826\) 8.39523 + 4.84699i 0.292107 + 0.168648i
\(827\) 41.0346i 1.42691i −0.700699 0.713457i \(-0.747128\pi\)
0.700699 0.713457i \(-0.252872\pi\)
\(828\) 4.00240 6.93236i 0.139093 0.240916i
\(829\) 5.11381 + 8.85738i 0.177610 + 0.307629i 0.941061 0.338236i \(-0.109830\pi\)
−0.763451 + 0.645865i \(0.776497\pi\)
\(830\) −85.9317 + 49.6127i −2.98273 + 1.72208i
\(831\) 3.29054 0.114148
\(832\) 26.9975 4.71768i 0.935970 0.163556i
\(833\) 2.52716 0.0875607
\(834\) −3.40707 + 1.96707i −0.117977 + 0.0681141i
\(835\) 21.1212 + 36.5830i 0.730930 + 1.26601i
\(836\) −10.3605 + 17.9449i −0.358325 + 0.620637i
\(837\) 0.917134i 0.0317008i
\(838\) −52.5419 30.3351i −1.81503 1.04791i
\(839\) 29.8124 + 17.2122i 1.02924 + 0.594230i 0.916766 0.399425i \(-0.130790\pi\)
0.112471 + 0.993655i \(0.464123\pi\)
\(840\) 0.279303i 0.00963686i
\(841\) 10.9067 18.8910i 0.376095 0.651415i
\(842\) 15.3186 + 26.5326i 0.527914 + 0.914374i
\(843\) −20.5267 + 11.8511i −0.706977 + 0.408173i
\(844\) −3.89158 −0.133954
\(845\) −12.5775 34.8891i −0.432678 1.20022i
\(846\) −1.19545 −0.0411003
\(847\) 4.91831 2.83959i 0.168995 0.0975693i
\(848\) 2.90458 + 5.03087i 0.0997436 + 0.172761i
\(849\) 3.19561 5.53496i 0.109673 0.189959i
\(850\) 15.7660i 0.540769i
\(851\) −21.0990 12.1815i −0.723264 0.417577i
\(852\) −20.7894 12.0028i −0.712234 0.411208i
\(853\) 19.9376i 0.682650i −0.939945 0.341325i \(-0.889124\pi\)
0.939945 0.341325i \(-0.110876\pi\)
\(854\) 13.3660 23.1506i 0.457376 0.792198i
\(855\) 6.56853 + 11.3770i 0.224639 + 0.389086i
\(856\) −0.302405 + 0.174594i −0.0103360 + 0.00596749i
\(857\) −5.68966 −0.194355 −0.0971776 0.995267i \(-0.530981\pi\)
−0.0971776 + 0.995267i \(0.530981\pi\)
\(858\) 16.2843 2.84560i 0.555937 0.0971473i
\(859\) −17.3268 −0.591182 −0.295591 0.955315i \(-0.595517\pi\)
−0.295591 + 0.955315i \(0.595517\pi\)
\(860\) 51.3871 29.6684i 1.75229 1.01168i
\(861\) −2.07608 3.59587i −0.0707525 0.122547i
\(862\) −13.5280 + 23.4312i −0.460766 + 0.798070i
\(863\) 53.7906i 1.83105i 0.402257 + 0.915527i \(0.368226\pi\)
−0.402257 + 0.915527i \(0.631774\pi\)
\(864\) 6.88124 + 3.97288i 0.234104 + 0.135160i
\(865\) −3.33587 1.92596i −0.113423 0.0654847i
\(866\) 46.9827i 1.59654i
\(867\) 5.30674 9.19155i 0.180226 0.312161i
\(868\) −0.894547 1.54940i −0.0303629 0.0525901i
\(869\) −13.3324 + 7.69745i −0.452270 + 0.261118i
\(870\) −15.2011 −0.515367
\(871\) −39.5268 + 33.0637i −1.33931 + 1.12032i
\(872\) 1.12689 0.0381612
\(873\) −4.46293 + 2.57667i −0.151047 + 0.0872071i
\(874\) −18.7793 32.5268i −0.635221 1.10023i
\(875\) −2.65500 + 4.59859i −0.0897552 + 0.155461i
\(876\) 21.2629i 0.718406i
\(877\) 41.4687 + 23.9420i 1.40030 + 0.808462i 0.994423 0.105466i \(-0.0336334\pi\)
0.405875 + 0.913929i \(0.366967\pi\)
\(878\) −54.5184 31.4762i −1.83991 1.06227i
\(879\) 22.0242i 0.742857i
\(880\) −13.4774 + 23.3435i −0.454323 + 0.786911i
\(881\) −6.64002 11.5009i −0.223708 0.387474i 0.732223 0.681065i \(-0.238483\pi\)
−0.955931 + 0.293591i \(0.905150\pi\)
\(882\) −1.72135 + 0.993824i −0.0579610 + 0.0334638i
\(883\) 15.0727 0.507236 0.253618 0.967304i \(-0.418379\pi\)
0.253618 + 0.967304i \(0.418379\pi\)
\(884\) −11.4045 13.6338i −0.383575 0.458554i
\(885\) 13.9136 0.467701
\(886\) 18.1289 10.4667i 0.609052 0.351636i
\(887\) −0.413898 0.716892i −0.0138973 0.0240709i 0.858993 0.511987i \(-0.171090\pi\)
−0.872890 + 0.487916i \(0.837757\pi\)
\(888\) 0.290635 0.503395i 0.00975308 0.0168928i
\(889\) 18.1578i 0.608994i
\(890\) 53.1277 + 30.6733i 1.78084 + 1.02817i
\(891\) 1.99765 + 1.15335i 0.0669239 + 0.0386385i
\(892\) 55.9827i 1.87444i
\(893\) −1.38478 + 2.39851i −0.0463399 + 0.0802631i
\(894\) 23.3811 + 40.4972i 0.781981 + 1.35443i
\(895\) −11.9382 + 6.89252i −0.399050 + 0.230391i
\(896\) 0.782990 0.0261578
\(897\) −5.08160 + 13.8952i −0.169670 + 0.463947i
\(898\) −29.7280 −0.992036
\(899\) −2.12923 + 1.22931i −0.0710138 + 0.0409998i
\(900\) −3.06140 5.30250i −0.102047 0.176750i
\(901\) 1.79203 3.10389i 0.0597012 0.103406i
\(902\) 19.0372i 0.633869i
\(903\) −9.23371 5.33109i −0.307279 0.177407i
\(904\) 0.173982 + 0.100449i 0.00578655 + 0.00334087i
\(905\) 50.8275i 1.68956i
\(906\) 11.7100 20.2824i 0.389040 0.673838i
\(907\) −4.43003 7.67304i −0.147097 0.254779i 0.783057 0.621951i \(-0.213660\pi\)
−0.930153 + 0.367172i \(0.880326\pi\)
\(908\) 14.0603 8.11774i 0.466609 0.269397i
\(909\) 11.8259 0.392239
\(910\) 3.51935 + 20.1399i 0.116665 + 0.667631i
\(911\) 56.3640 1.86742 0.933711 0.358027i \(-0.116550\pi\)
0.933711 + 0.358027i \(0.116550\pi\)
\(912\) 16.3350 9.43104i 0.540907 0.312293i
\(913\) 20.1821 + 34.9564i 0.667929 + 1.15689i
\(914\) 13.1048 22.6982i 0.433469 0.750791i
\(915\) 38.3681i 1.26841i
\(916\) −2.10446 1.21501i −0.0695332 0.0401450i
\(917\) −1.70262 0.983010i −0.0562256 0.0324619i
\(918\) 5.02309i 0.165787i
\(919\) 7.72345 13.3774i 0.254773 0.441280i −0.710061 0.704140i \(-0.751333\pi\)
0.964834 + 0.262861i \(0.0846659\pi\)
\(920\) −0.573054 0.992559i −0.0188930 0.0327237i
\(921\) 9.28340 5.35977i 0.305898 0.176610i
\(922\) −9.51872 −0.313482
\(923\) 41.6702 + 15.2392i 1.37159 + 0.501604i
\(924\) −4.49977 −0.148031
\(925\) −16.1384 + 9.31752i −0.530628 + 0.306358i
\(926\) 19.3493 + 33.5140i 0.635858 + 1.10134i
\(927\) 9.05002 15.6751i 0.297242 0.514838i
\(928\) 21.3008i 0.699232i
\(929\) −6.27538 3.62310i −0.205889 0.118870i 0.393511 0.919320i \(-0.371260\pi\)
−0.599399 + 0.800450i \(0.704594\pi\)
\(930\) −4.50381 2.60028i −0.147686 0.0852664i
\(931\) 4.60490i 0.150920i
\(932\) −9.43792 + 16.3470i −0.309149 + 0.535463i
\(933\) 4.08219 + 7.07056i 0.133645 + 0.231480i
\(934\) −12.5474 + 7.24423i −0.410562 + 0.237038i
\(935\) 16.6303 0.543868
\(936\) −0.331522 0.121241i −0.0108361 0.00396287i
\(937\) 10.6692 0.348548 0.174274 0.984697i \(-0.444242\pi\)
0.174274 + 0.984697i \(0.444242\pi\)
\(938\) 24.6024 14.2042i 0.803297 0.463784i
\(939\) 6.33636 + 10.9749i 0.206779 + 0.358152i
\(940\) 1.67355 2.89867i 0.0545851 0.0945443i
\(941\) 34.4575i 1.12328i 0.827381 + 0.561642i \(0.189830\pi\)
−0.827381 + 0.561642i \(0.810170\pi\)
\(942\) 3.90061 + 2.25202i 0.127089 + 0.0733748i
\(943\) 14.7555 + 8.51911i 0.480506 + 0.277420i
\(944\) 19.9771i 0.650198i
\(945\) −1.42642 + 2.47063i −0.0464015 + 0.0803697i
\(946\) −24.4425 42.3356i −0.794693 1.37645i
\(947\) 7.25075 4.18622i 0.235618 0.136034i −0.377543 0.925992i \(-0.623231\pi\)
0.613161 + 0.789958i \(0.289898\pi\)
\(948\) −13.0193 −0.422847
\(949\) −6.76499 38.7134i −0.219601 1.25669i
\(950\) −28.7283 −0.932069
\(951\) 1.36967 0.790779i 0.0444146 0.0256428i
\(952\) −0.123709 0.214269i −0.00400942 0.00694451i
\(953\) −9.20790 + 15.9486i −0.298273 + 0.516624i −0.975741 0.218928i \(-0.929744\pi\)
0.677468 + 0.735552i \(0.263077\pi\)
\(954\) 2.81892i 0.0912660i
\(955\) 0.574233 + 0.331534i 0.0185818 + 0.0107282i
\(956\) 12.5876 + 7.26745i 0.407112 + 0.235046i
\(957\) 6.18371i 0.199891i
\(958\) −12.2526 + 21.2221i −0.395863 + 0.685655i
\(959\) −6.35067 10.9997i −0.205074 0.355198i
\(960\) −18.7798 + 10.8425i −0.606116 + 0.349941i
\(961\) 30.1589 0.972867
\(962\) 14.6140 39.9608i 0.471175 1.28839i
\(963\) −3.56666 −0.114934
\(964\) −20.0014 + 11.5478i −0.644202 + 0.371930i
\(965\) −36.7949 63.7306i −1.18447 2.05156i
\(966\) 4.07812 7.06351i 0.131211 0.227265i
\(967\) 24.6033i 0.791189i 0.918425 + 0.395595i \(0.129461\pi\)
−0.918425 + 0.395595i \(0.870539\pi\)
\(968\) −0.481519 0.278005i −0.0154766 0.00893542i
\(969\) −10.0782 5.81865i −0.323758 0.186922i
\(970\) 29.2217i 0.938254i
\(971\) 18.3663 31.8114i 0.589403 1.02088i −0.404908 0.914358i \(-0.632696\pi\)
0.994311 0.106518i \(-0.0339703\pi\)
\(972\) 0.975372 + 1.68939i 0.0312851 + 0.0541873i
\(973\) −1.71412 + 0.989648i −0.0549522 + 0.0317267i
\(974\) 28.2204 0.904238
\(975\) 7.26095 + 8.68028i 0.232537 + 0.277991i
\(976\) −55.0886 −1.76334
\(977\) 34.6185 19.9870i 1.10755 0.639442i 0.169353 0.985556i \(-0.445832\pi\)
0.938192 + 0.346114i \(0.112499\pi\)
\(978\) 17.2001 + 29.7914i 0.549999 + 0.952626i
\(979\) 12.4777 21.6119i 0.398788 0.690720i
\(980\) 5.56516i 0.177773i
\(981\) 9.96812 + 5.75510i 0.318258 + 0.183746i
\(982\) 0.983756 + 0.567972i 0.0313929 + 0.0181247i
\(983\) 16.6132i 0.529878i −0.964265 0.264939i \(-0.914648\pi\)
0.964265 0.264939i \(-0.0853518\pi\)
\(984\) −0.203255 + 0.352048i −0.00647953 + 0.0112229i
\(985\) −17.9656 31.1173i −0.572432 0.991481i
\(986\) 11.6617 6.73287i 0.371384 0.214418i
\(987\) −0.601438 −0.0191440
\(988\) 24.8430 20.7809i 0.790363 0.661129i
\(989\) 43.7518 1.39123
\(990\) −11.3276 + 6.53998i −0.360014 + 0.207854i
\(991\) 13.1679 + 22.8075i 0.418292 + 0.724503i 0.995768 0.0919047i \(-0.0292955\pi\)
−0.577476 + 0.816408i \(0.695962\pi\)
\(992\) −3.64367 + 6.31102i −0.115687 + 0.200375i
\(993\) 24.4371i 0.775487i
\(994\) −21.1827 12.2298i −0.671875 0.387907i
\(995\) 3.00646 + 1.73578i 0.0953111 + 0.0550279i
\(996\) 34.1355i 1.08162i
\(997\) 12.8068 22.1820i 0.405595 0.702510i −0.588796 0.808282i \(-0.700398\pi\)
0.994390 + 0.105771i \(0.0337312\pi\)
\(998\) −39.4844 68.3890i −1.24986 2.16481i
\(999\) 5.14175 2.96859i 0.162678 0.0939221i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.bd.a.127.7 yes 16
3.2 odd 2 819.2.ct.b.127.2 16
13.2 odd 12 3549.2.a.bb.1.8 8
13.4 even 6 inner 273.2.bd.a.43.7 16
13.11 odd 12 3549.2.a.bd.1.1 8
39.17 odd 6 819.2.ct.b.316.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.bd.a.43.7 16 13.4 even 6 inner
273.2.bd.a.127.7 yes 16 1.1 even 1 trivial
819.2.ct.b.127.2 16 3.2 odd 2
819.2.ct.b.316.2 16 39.17 odd 6
3549.2.a.bb.1.8 8 13.2 odd 12
3549.2.a.bd.1.1 8 13.11 odd 12