Properties

Label 2-266400-1.1-c1-0-19
Degree $2$
Conductor $266400$
Sign $1$
Analytic cond. $2127.21$
Root an. cond. $46.1217$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 2·11-s − 13-s + 3·17-s − 4·19-s + 6·23-s − 6·29-s + 3·31-s + 37-s − 4·43-s − 5·47-s − 3·49-s + 7·53-s + 5·59-s + 2·61-s + 5·67-s − 13·71-s + 73-s − 4·77-s + 3·79-s + 6·83-s − 2·89-s − 2·91-s + 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 0.755·7-s − 0.603·11-s − 0.277·13-s + 0.727·17-s − 0.917·19-s + 1.25·23-s − 1.11·29-s + 0.538·31-s + 0.164·37-s − 0.609·43-s − 0.729·47-s − 3/7·49-s + 0.961·53-s + 0.650·59-s + 0.256·61-s + 0.610·67-s − 1.54·71-s + 0.117·73-s − 0.455·77-s + 0.337·79-s + 0.658·83-s − 0.211·89-s − 0.209·91-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 266400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 266400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(266400\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 37\)
Sign: $1$
Analytic conductor: \(2127.21\)
Root analytic conductor: \(46.1217\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 266400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.910541728\)
\(L(\frac12)\) \(\approx\) \(1.910541728\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
37 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 7 T + p T^{2} \) 1.53.ah
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - T + p T^{2} \) 1.73.ab
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.82922404314039, −12.37117110209707, −11.75830035135815, −11.47991127836567, −10.89312948339439, −10.60147059175430, −10.01792112202688, −9.653991789137545, −8.982519010865730, −8.592119446809857, −8.127858789240706, −7.612698413096306, −7.314985727301844, −6.614665533243843, −6.222652884885153, −5.489949002452573, −5.039705886310012, −4.862002568671505, −3.982444412450778, −3.663129752071999, −2.794158384210311, −2.497904311733223, −1.703726417868251, −1.230149285713889, −0.3781442844981474, 0.3781442844981474, 1.230149285713889, 1.703726417868251, 2.497904311733223, 2.794158384210311, 3.663129752071999, 3.982444412450778, 4.862002568671505, 5.039705886310012, 5.489949002452573, 6.222652884885153, 6.614665533243843, 7.314985727301844, 7.612698413096306, 8.127858789240706, 8.592119446809857, 8.982519010865730, 9.653991789137545, 10.01792112202688, 10.60147059175430, 10.89312948339439, 11.47991127836567, 11.75830035135815, 12.37117110209707, 12.82922404314039

Graph of the $Z$-function along the critical line