L(s) = 1 | + (0.0302 − 0.171i)2-s + (−0.0871 − 0.996i)3-s + (0.911 + 0.331i)4-s + (−0.766 + 0.642i)5-s + (−0.173 − 0.0151i)6-s + (0.171 − 0.297i)8-s + (−0.984 + 0.173i)9-s + (0.0871 + 0.150i)10-s + (0.984 + 0.826i)11-s + (0.250 − 0.936i)12-s + (−0.199 − 1.12i)13-s + (0.707 + 0.707i)15-s + (0.696 + 0.584i)16-s + 0.174i·18-s + (0.5 − 0.866i)19-s + (−0.911 + 0.331i)20-s + ⋯ |
L(s) = 1 | + (0.0302 − 0.171i)2-s + (−0.0871 − 0.996i)3-s + (0.911 + 0.331i)4-s + (−0.766 + 0.642i)5-s + (−0.173 − 0.0151i)6-s + (0.171 − 0.297i)8-s + (−0.984 + 0.173i)9-s + (0.0871 + 0.150i)10-s + (0.984 + 0.826i)11-s + (0.250 − 0.936i)12-s + (−0.199 − 1.12i)13-s + (0.707 + 0.707i)15-s + (0.696 + 0.584i)16-s + 0.174i·18-s + (0.5 − 0.866i)19-s + (−0.911 + 0.331i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2565 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.784 + 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2565 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.784 + 0.620i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.365526239\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.365526239\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.0871 + 0.996i)T \) |
| 5 | \( 1 + (0.766 - 0.642i)T \) |
| 19 | \( 1 + (-0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.0302 + 0.171i)T + (-0.939 - 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 11 | \( 1 + (-0.984 - 0.826i)T + (0.173 + 0.984i)T^{2} \) |
| 13 | \( 1 + (0.199 + 1.12i)T + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 31 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 37 | \( 1 + (-0.996 - 1.72i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 - 1.81T + T^{2} \) |
| 59 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 61 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (0.335 + 1.90i)T + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.396 + 0.332i)T + (0.173 + 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.755939658072240003353277613690, −7.87908142650361056724100804256, −7.46933239917122118289258727031, −6.76393473057337474246426490473, −6.33240336694197893961295933787, −5.17528335793076033833016597418, −3.94933942123028220542554738698, −3.01644664193487309479265329883, −2.40690778876505476766700825720, −1.12736249943108080296401557415,
1.20643458084646381039756785810, 2.62117748749289172582245719699, 3.82711671830584279139468315128, 4.17730766033855888274475778649, 5.39194817518870746200888227970, 5.88904240462357323450321979880, 6.83647687103152360913214631319, 7.63528426991486610167636254442, 8.536798765066890086700198271796, 9.147182086710326805007802239124