sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2565, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([10,9,9]))
pari:[g,chi] = znchar(Mod(2374,2565))
Modulus: | \(2565\) | |
Conductor: | \(2565\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(18\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2565}(94,\cdot)\)
\(\chi_{2565}(664,\cdot)\)
\(\chi_{2565}(949,\cdot)\)
\(\chi_{2565}(1519,\cdot)\)
\(\chi_{2565}(1804,\cdot)\)
\(\chi_{2565}(2374,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,1027,1351)\) → \((e\left(\frac{5}{9}\right),-1,-1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(22\) |
\( \chi_{ 2565 }(2374, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) |
sage:chi.jacobi_sum(n)