Properties

Label 2565.1.dy.d.2374.3
Level $2565$
Weight $1$
Character 2565.2374
Analytic conductor $1.280$
Analytic rank $0$
Dimension $24$
Projective image $D_{36}$
CM discriminant -95
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2565,1,Mod(94,2565)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2565, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([8, 9, 9])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2565.94"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2565 = 3^{3} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2565.dy (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.28010175740\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{72})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{24} - x^{12} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{36}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{36} - \cdots)\)

Embedding invariants

Embedding label 2374.3
Root \(0.996195 + 0.0871557i\) of defining polynomial
Character \(\chi\) \(=\) 2565.2374
Dual form 2565.1.dy.d.94.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0302689 - 0.171663i) q^{2} +(-0.0871557 - 0.996195i) q^{3} +(0.911141 + 0.331628i) q^{4} +(-0.766044 + 0.642788i) q^{5} +(-0.173648 - 0.0151922i) q^{6} +(0.171663 - 0.297330i) q^{8} +(-0.984808 + 0.173648i) q^{9} +(0.0871557 + 0.150958i) q^{10} +(0.984808 + 0.826352i) q^{11} +(0.250955 - 0.936577i) q^{12} +(-0.199201 - 1.12973i) q^{13} +(0.707107 + 0.707107i) q^{15} +(0.696924 + 0.584789i) q^{16} +0.174311i q^{18} +(0.500000 - 0.866025i) q^{19} +(-0.911141 + 0.331628i) q^{20} +(0.171663 - 0.144043i) q^{22} +(-0.311160 - 0.145096i) q^{24} +(0.173648 - 0.984808i) q^{25} -0.199962 q^{26} +(0.258819 + 0.965926i) q^{27} +(0.142788 - 0.0999810i) q^{30} +(0.384485 - 0.322621i) q^{32} +(0.737376 - 1.05308i) q^{33} +(-0.954885 - 0.168372i) q^{36} +(0.996195 + 1.72546i) q^{37} +(-0.133530 - 0.112045i) q^{38} +(-1.10806 + 0.296905i) q^{39} +(0.0596180 + 0.338111i) q^{40} +(0.623257 + 1.07951i) q^{44} +(0.642788 - 0.766044i) q^{45} +(0.521822 - 0.745240i) q^{48} +(0.766044 - 0.642788i) q^{49} +(-0.163799 - 0.0596180i) q^{50} +(0.193148 - 1.09540i) q^{52} +1.81262 q^{53} +(0.173648 - 0.0151922i) q^{54} -1.28558 q^{55} +(-0.906308 - 0.422618i) q^{57} +(0.409777 + 0.878770i) q^{60} +(0.411141 + 0.712116i) q^{64} +(0.878770 + 0.737376i) q^{65} +(-0.158456 - 0.158456i) q^{66} +(-0.335463 - 1.90250i) q^{67} +(-0.117425 + 0.322621i) q^{72} +(0.326352 - 0.118782i) q^{74} +(-0.996195 - 0.0871557i) q^{75} +(0.742769 - 0.623257i) q^{76} +(0.0174278 + 0.199201i) q^{78} -0.909770 q^{80} +(0.939693 - 0.342020i) q^{81} +(0.414754 - 0.150958i) q^{88} +(-0.112045 - 0.133530i) q^{90} +(0.173648 + 0.984808i) q^{95} +(-0.354904 - 0.354904i) q^{96} +(-0.396534 - 0.332731i) q^{97} +(-0.0871557 - 0.150958i) q^{98} +(-1.11334 - 0.642788i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{16} + 12 q^{19} + 12 q^{24} - 12 q^{30} - 24 q^{36} + 12 q^{44} - 12 q^{64} + 24 q^{66} + 12 q^{74} - 24 q^{80} - 12 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2565\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0302689 0.171663i 0.0302689 0.171663i −0.965926 0.258819i \(-0.916667\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(3\) −0.0871557 0.996195i −0.0871557 0.996195i
\(4\) 0.911141 + 0.331628i 0.911141 + 0.331628i
\(5\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(6\) −0.173648 0.0151922i −0.173648 0.0151922i
\(7\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(8\) 0.171663 0.297330i 0.171663 0.297330i
\(9\) −0.984808 + 0.173648i −0.984808 + 0.173648i
\(10\) 0.0871557 + 0.150958i 0.0871557 + 0.150958i
\(11\) 0.984808 + 0.826352i 0.984808 + 0.826352i 0.984808 0.173648i \(-0.0555556\pi\)
1.00000i \(0.5\pi\)
\(12\) 0.250955 0.936577i 0.250955 0.936577i
\(13\) −0.199201 1.12973i −0.199201 1.12973i −0.906308 0.422618i \(-0.861111\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(14\) 0 0
\(15\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(16\) 0.696924 + 0.584789i 0.696924 + 0.584789i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.174311i 0.174311i
\(19\) 0.500000 0.866025i 0.500000 0.866025i
\(20\) −0.911141 + 0.331628i −0.911141 + 0.331628i
\(21\) 0 0
\(22\) 0.171663 0.144043i 0.171663 0.144043i
\(23\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(24\) −0.311160 0.145096i −0.311160 0.145096i
\(25\) 0.173648 0.984808i 0.173648 0.984808i
\(26\) −0.199962 −0.199962
\(27\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(28\) 0 0
\(29\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(30\) 0.142788 0.0999810i 0.142788 0.0999810i
\(31\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(32\) 0.384485 0.322621i 0.384485 0.322621i
\(33\) 0.737376 1.05308i 0.737376 1.05308i
\(34\) 0 0
\(35\) 0 0
\(36\) −0.954885 0.168372i −0.954885 0.168372i
\(37\) 0.996195 + 1.72546i 0.996195 + 1.72546i 0.573576 + 0.819152i \(0.305556\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(38\) −0.133530 0.112045i −0.133530 0.112045i
\(39\) −1.10806 + 0.296905i −1.10806 + 0.296905i
\(40\) 0.0596180 + 0.338111i 0.0596180 + 0.338111i
\(41\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(42\) 0 0
\(43\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(44\) 0.623257 + 1.07951i 0.623257 + 1.07951i
\(45\) 0.642788 0.766044i 0.642788 0.766044i
\(46\) 0 0
\(47\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(48\) 0.521822 0.745240i 0.521822 0.745240i
\(49\) 0.766044 0.642788i 0.766044 0.642788i
\(50\) −0.163799 0.0596180i −0.163799 0.0596180i
\(51\) 0 0
\(52\) 0.193148 1.09540i 0.193148 1.09540i
\(53\) 1.81262 1.81262 0.906308 0.422618i \(-0.138889\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(54\) 0.173648 0.0151922i 0.173648 0.0151922i
\(55\) −1.28558 −1.28558
\(56\) 0 0
\(57\) −0.906308 0.422618i −0.906308 0.422618i
\(58\) 0 0
\(59\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(60\) 0.409777 + 0.878770i 0.409777 + 0.878770i
\(61\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0.411141 + 0.712116i 0.411141 + 0.712116i
\(65\) 0.878770 + 0.737376i 0.878770 + 0.737376i
\(66\) −0.158456 0.158456i −0.158456 0.158456i
\(67\) −0.335463 1.90250i −0.335463 1.90250i −0.422618 0.906308i \(-0.638889\pi\)
0.0871557 0.996195i \(-0.472222\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(72\) −0.117425 + 0.322621i −0.117425 + 0.322621i
\(73\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(74\) 0.326352 0.118782i 0.326352 0.118782i
\(75\) −0.996195 0.0871557i −0.996195 0.0871557i
\(76\) 0.742769 0.623257i 0.742769 0.623257i
\(77\) 0 0
\(78\) 0.0174278 + 0.199201i 0.0174278 + 0.199201i
\(79\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(80\) −0.909770 −0.909770
\(81\) 0.939693 0.342020i 0.939693 0.342020i
\(82\) 0 0
\(83\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0.414754 0.150958i 0.414754 0.150958i
\(89\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(90\) −0.112045 0.133530i −0.112045 0.133530i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(96\) −0.354904 0.354904i −0.354904 0.354904i
\(97\) −0.396534 0.332731i −0.396534 0.332731i 0.422618 0.906308i \(-0.361111\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(98\) −0.0871557 0.150958i −0.0871557 0.150958i
\(99\) −1.11334 0.642788i −1.11334 0.642788i
\(100\) 0.484808 0.839712i 0.484808 0.839712i
\(101\) −1.62760 + 0.592396i −1.62760 + 0.592396i −0.984808 0.173648i \(-0.944444\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(102\) 0 0
\(103\) 0.133530 0.112045i 0.133530 0.112045i −0.573576 0.819152i \(-0.694444\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) −0.370096 0.134704i −0.370096 0.134704i
\(105\) 0 0
\(106\) 0.0548658 0.311160i 0.0548658 0.311160i
\(107\) −0.845237 −0.845237 −0.422618 0.906308i \(-0.638889\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(108\) −0.0845076 + 0.965926i −0.0845076 + 0.965926i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −0.0389129 + 0.220686i −0.0389129 + 0.220686i
\(111\) 1.63207 1.14279i 1.63207 1.14279i
\(112\) 0 0
\(113\) −1.47988 + 1.24177i −1.47988 + 1.24177i −0.573576 + 0.819152i \(0.694444\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(114\) −0.0999810 + 0.142788i −0.0999810 + 0.142788i
\(115\) 0 0
\(116\) 0 0
\(117\) 0.392349 + 1.07797i 0.392349 + 1.07797i
\(118\) 0 0
\(119\) 0 0
\(120\) 0.331628 0.0888595i 0.331628 0.0888595i
\(121\) 0.113341 + 0.642788i 0.113341 + 0.642788i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(126\) 0 0
\(127\) −0.965926 + 1.67303i −0.965926 + 1.67303i −0.258819 + 0.965926i \(0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0.606330 0.220686i 0.606330 0.220686i
\(129\) 0 0
\(130\) 0.153180 0.128533i 0.153180 0.128533i
\(131\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(132\) 1.02108 0.714971i 1.02108 0.714971i
\(133\) 0 0
\(134\) −0.336744 −0.336744
\(135\) −0.819152 0.573576i −0.819152 0.573576i
\(136\) 0 0
\(137\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(138\) 0 0
\(139\) −1.62760 0.592396i −1.62760 0.592396i −0.642788 0.766044i \(-0.722222\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.737376 1.27717i 0.737376 1.27717i
\(144\) −0.787884 0.454885i −0.787884 0.454885i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.707107 0.707107i −0.707107 0.707107i
\(148\) 0.335463 + 1.90250i 0.335463 + 1.90250i
\(149\) −0.118782 0.673648i −0.118782 0.673648i −0.984808 0.173648i \(-0.944444\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(150\) −0.0451151 + 0.168372i −0.0451151 + 0.168372i
\(151\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(152\) −0.171663 0.297330i −0.171663 0.297330i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −1.10806 0.0969431i −1.10806 0.0969431i
\(157\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(158\) 0 0
\(159\) −0.157980 1.80572i −0.157980 1.80572i
\(160\) −0.0871557 + 0.494285i −0.0871557 + 0.494285i
\(161\) 0 0
\(162\) −0.0302689 0.171663i −0.0302689 0.171663i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0.112045 + 1.28068i 0.112045 + 1.28068i
\(166\) 0 0
\(167\) −1.25501 + 1.05308i −1.25501 + 1.05308i −0.258819 + 0.965926i \(0.583333\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(168\) 0 0
\(169\) −0.296905 + 0.108065i −0.296905 + 0.108065i
\(170\) 0 0
\(171\) −0.342020 + 0.939693i −0.342020 + 0.939693i
\(172\) 0 0
\(173\) −0.878770 0.737376i −0.878770 0.737376i 0.0871557 0.996195i \(-0.472222\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.203095 + 1.15181i 0.203095 + 1.15181i
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0.839712 0.484808i 0.839712 0.484808i
\(181\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.87223 0.681437i −1.87223 0.681437i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0.174311 0.174311
\(191\) 0.326352 1.85083i 0.326352 1.85083i −0.173648 0.984808i \(-0.555556\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(192\) 0.673573 0.471641i 0.673573 0.471641i
\(193\) −1.70330 0.619951i −1.70330 0.619951i −0.707107 0.707107i \(-0.750000\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(194\) −0.0691204 + 0.0579989i −0.0691204 + 0.0579989i
\(195\) 0.657980 0.939693i 0.657980 0.939693i
\(196\) 0.911141 0.331628i 0.911141 0.331628i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) −0.144043 + 0.171663i −0.144043 + 0.171663i
\(199\) 0.766044 + 1.32683i 0.766044 + 1.32683i 0.939693 + 0.342020i \(0.111111\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(200\) −0.263003 0.220686i −0.263003 0.220686i
\(201\) −1.86603 + 0.500000i −1.86603 + 0.500000i
\(202\) 0.0524272 + 0.297330i 0.0524272 + 0.297330i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −0.0151922 0.0263137i −0.0151922 0.0263137i
\(207\) 0 0
\(208\) 0.521822 0.903823i 0.521822 0.903823i
\(209\) 1.20805 0.439693i 1.20805 0.439693i
\(210\) 0 0
\(211\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(212\) 1.65155 + 0.601114i 1.65155 + 0.601114i
\(213\) 0 0
\(214\) −0.0255844 + 0.145096i −0.0255844 + 0.145096i
\(215\) 0 0
\(216\) 0.331628 + 0.0888595i 0.331628 + 0.0888595i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) −1.17134 0.426333i −1.17134 0.426333i
\(221\) 0 0
\(222\) −0.146774 0.314757i −0.146774 0.314757i
\(223\) 1.53950 0.560333i 1.53950 0.560333i 0.573576 0.819152i \(-0.305556\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(224\) 0 0
\(225\) 1.00000i 1.00000i
\(226\) 0.168372 + 0.291629i 0.168372 + 0.291629i
\(227\) 1.08335 + 0.909039i 1.08335 + 0.909039i 0.996195 0.0871557i \(-0.0277778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(228\) −0.685622 0.685622i −0.685622 0.685622i
\(229\) 0.342020 + 1.93969i 0.342020 + 1.93969i 0.342020 + 0.939693i \(0.388889\pi\)
1.00000i \(0.500000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0.196924 0.0347230i 0.196924 0.0347230i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.76604 + 0.642788i 1.76604 + 0.642788i 1.00000 \(0\)
0.766044 + 0.642788i \(0.222222\pi\)
\(240\) 0.0792917 + 0.906308i 0.0792917 + 0.906308i
\(241\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(242\) 0.113774 0.113774
\(243\) −0.422618 0.906308i −0.422618 0.906308i
\(244\) 0 0
\(245\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(246\) 0 0
\(247\) −1.07797 0.392349i −1.07797 0.392349i
\(248\) 0 0
\(249\) 0 0
\(250\) 0.163799 0.0596180i 0.163799 0.0596180i
\(251\) 0.173648 0.300767i 0.173648 0.300767i −0.766044 0.642788i \(-0.777778\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0.257961 + 0.216455i 0.257961 + 0.216455i
\(255\) 0 0
\(256\) 0.123257 + 0.699024i 0.123257 + 0.699024i
\(257\) −0.245576 1.39273i −0.245576 1.39273i −0.819152 0.573576i \(-0.805556\pi\)
0.573576 0.819152i \(-0.305556\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.556149 + 0.963278i 0.556149 + 0.963278i
\(261\) 0 0
\(262\) −0.0302689 + 0.0524272i −0.0302689 + 0.0524272i
\(263\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(264\) −0.186532 0.400019i −0.186532 0.400019i
\(265\) −1.38854 + 1.16513i −1.38854 + 1.16513i
\(266\) 0 0
\(267\) 0 0
\(268\) 0.325270 1.84470i 0.325270 1.84470i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −0.123257 + 0.123257i −0.123257 + 0.123257i
\(271\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.984808 0.826352i 0.984808 0.826352i
\(276\) 0 0
\(277\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(278\) −0.150958 + 0.261467i −0.150958 + 0.261467i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(282\) 0 0
\(283\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(284\) 0 0
\(285\) 0.965926 0.258819i 0.965926 0.258819i
\(286\) −0.196924 0.165239i −0.196924 0.165239i
\(287\) 0 0
\(288\) −0.322621 + 0.384485i −0.322621 + 0.384485i
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) −0.296905 + 0.424024i −0.296905 + 0.424024i
\(292\) 0 0
\(293\) −1.81535 0.660732i −1.81535 0.660732i −0.996195 0.0871557i \(-0.972222\pi\)
−0.819152 0.573576i \(-0.805556\pi\)
\(294\) −0.142788 + 0.0999810i −0.142788 + 0.0999810i
\(295\) 0 0
\(296\) 0.684040 0.684040
\(297\) −0.543308 + 1.16513i −0.543308 + 1.16513i
\(298\) −0.119236 −0.119236
\(299\) 0 0
\(300\) −0.878770 0.409777i −0.878770 0.409777i
\(301\) 0 0
\(302\) 0 0
\(303\) 0.731996 + 1.56977i 0.731996 + 1.56977i
\(304\) 0.854904 0.311160i 0.854904 0.311160i
\(305\) 0 0
\(306\) 0 0
\(307\) 0.906308 + 1.56977i 0.906308 + 1.56977i 0.819152 + 0.573576i \(0.194444\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(308\) 0 0
\(309\) −0.123257 0.123257i −0.123257 0.123257i
\(310\) 0 0
\(311\) 0 0 0.984808 0.173648i \(-0.0555556\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(312\) −0.101935 + 0.380428i −0.101935 + 0.380428i
\(313\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.32893 + 0.483690i −1.32893 + 0.483690i −0.906308 0.422618i \(-0.861111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(318\) −0.314757 0.0275377i −0.314757 0.0275377i
\(319\) 0 0
\(320\) −0.772691 0.281237i −0.772691 0.281237i
\(321\) 0.0736672 + 0.842020i 0.0736672 + 0.842020i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.969616 0.969616
\(325\) −1.14715 −1.14715
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0.223238 + 0.0195308i 0.223238 + 0.0195308i
\(331\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(332\) 0 0
\(333\) −1.28068 1.52626i −1.28068 1.52626i
\(334\) 0.142788 + 0.247315i 0.142788 + 0.247315i
\(335\) 1.47988 + 1.24177i 1.47988 + 1.24177i
\(336\) 0 0
\(337\) 0.245576 + 1.39273i 0.245576 + 1.39273i 0.819152 + 0.573576i \(0.194444\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(338\) 0.00956374 + 0.0542387i 0.00956374 + 0.0542387i
\(339\) 1.36603 + 1.36603i 1.36603 + 1.36603i
\(340\) 0 0
\(341\) 0 0
\(342\) 0.150958 + 0.0871557i 0.150958 + 0.0871557i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −0.153180 + 0.128533i −0.153180 + 0.128533i
\(347\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(348\) 0 0
\(349\) −0.266044 + 1.50881i −0.266044 + 1.50881i 0.500000 + 0.866025i \(0.333333\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(350\) 0 0
\(351\) 1.03967 0.484808i 1.03967 0.484808i
\(352\) 0.645243 0.645243
\(353\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.642788 1.11334i 0.642788 1.11334i −0.342020 0.939693i \(-0.611111\pi\)
0.984808 0.173648i \(-0.0555556\pi\)
\(360\) −0.117425 0.322621i −0.117425 0.322621i
\(361\) −0.500000 0.866025i −0.500000 0.866025i
\(362\) 0 0
\(363\) 0.630463 0.168932i 0.630463 0.168932i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(371\) 0 0
\(372\) 0 0
\(373\) −1.25501 + 1.05308i −1.25501 + 1.05308i −0.258819 + 0.965926i \(0.583333\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(374\) 0 0
\(375\) 0.819152 0.573576i 0.819152 0.573576i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −0.168372 + 0.954885i −0.168372 + 0.954885i
\(381\) 1.75085 + 0.816436i 1.75085 + 0.816436i
\(382\) −0.307842 0.112045i −0.307842 0.112045i
\(383\) 1.52626 1.28068i 1.52626 1.28068i 0.707107 0.707107i \(-0.250000\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(384\) −0.272691 0.584789i −0.272691 0.584789i
\(385\) 0 0
\(386\) −0.157980 + 0.273629i −0.157980 + 0.273629i
\(387\) 0 0
\(388\) −0.250955 0.434667i −0.250955 0.434667i
\(389\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(390\) −0.141394 0.141394i −0.141394 0.141394i
\(391\) 0 0
\(392\) −0.0596180 0.338111i −0.0596180 0.338111i
\(393\) −0.0898869 + 0.335463i −0.0898869 + 0.335463i
\(394\) 0 0
\(395\) 0 0
\(396\) −0.801244 0.954885i −0.801244 0.954885i
\(397\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(398\) 0.250955 0.0913401i 0.250955 0.0913401i
\(399\) 0 0
\(400\) 0.696924 0.584789i 0.696924 0.584789i
\(401\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(402\) 0.0293492 + 0.335463i 0.0293492 + 0.335463i
\(403\) 0 0
\(404\) −1.67942 −1.67942
\(405\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(406\) 0 0
\(407\) −0.444777 + 2.52245i −0.444777 + 2.52245i
\(408\) 0 0
\(409\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.158822 0.0578066i 0.158822 0.0578066i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.441063 0.370096i −0.441063 0.370096i
\(417\) −0.448288 + 1.67303i −0.448288 + 1.67303i
\(418\) −0.0389129 0.220686i −0.0389129 0.220686i
\(419\) −0.173648 0.984808i −0.173648 0.984808i −0.939693 0.342020i \(-0.888889\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(420\) 0 0
\(421\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.311160 0.538944i 0.311160 0.538944i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.770129 0.280304i −0.770129 0.280304i
\(429\) −1.33658 0.623257i −1.33658 0.623257i
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −0.384485 + 0.824531i −0.384485 + 0.824531i
\(433\) 0.517638 0.517638 0.258819 0.965926i \(-0.416667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(440\) −0.220686 + 0.382240i −0.220686 + 0.382240i
\(441\) −0.642788 + 0.766044i −0.642788 + 0.766044i
\(442\) 0 0
\(443\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(444\) 1.86603 0.500000i 1.86603 0.500000i
\(445\) 0 0
\(446\) −0.0495896 0.281237i −0.0495896 0.281237i
\(447\) −0.660732 + 0.177043i −0.660732 + 0.177043i
\(448\) 0 0
\(449\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(450\) 0.171663 + 0.0302689i 0.171663 + 0.0302689i
\(451\) 0 0
\(452\) −1.76019 + 0.640656i −1.76019 + 0.640656i
\(453\) 0 0
\(454\) 0.188840 0.158456i 0.188840 0.158456i
\(455\) 0 0
\(456\) −0.281237 + 0.196924i −0.281237 + 0.196924i
\(457\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(458\) 0.343327 0.343327
\(459\) 0 0
\(460\) 0 0
\(461\) −0.173648 + 0.984808i −0.173648 + 0.984808i 0.766044 + 0.642788i \(0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(462\) 0 0
\(463\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(468\) 1.11230i 1.11230i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −0.766044 0.642788i −0.766044 0.642788i
\(476\) 0 0
\(477\) −1.78508 + 0.314757i −1.78508 + 0.314757i
\(478\) 0.163799 0.283709i 0.163799 0.283709i
\(479\) 0.642788 0.233956i 0.642788 0.233956i 1.00000i \(-0.5\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(480\) 0.500000 + 0.0437443i 0.500000 + 0.0437443i
\(481\) 1.75085 1.46914i 1.75085 1.46914i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.109897 + 0.623257i −0.109897 + 0.623257i
\(485\) 0.517638 0.517638
\(486\) −0.168372 + 0.0451151i −0.168372 + 0.0451151i
\(487\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0.163799 + 0.0596180i 0.163799 + 0.0596180i
\(491\) −1.17365 + 0.984808i −1.17365 + 0.984808i −0.173648 + 0.984808i \(0.555556\pi\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −0.0999810 + 0.173172i −0.0999810 + 0.173172i
\(495\) 1.26604 0.223238i 1.26604 0.223238i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.118782 + 0.673648i 0.118782 + 0.673648i 0.984808 + 0.173648i \(0.0555556\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(500\) 0.168372 + 0.954885i 0.168372 + 0.954885i
\(501\) 1.15846 + 1.15846i 1.15846 + 1.15846i
\(502\) −0.0463746 0.0389129i −0.0463746 0.0389129i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) 0.866025 1.50000i 0.866025 1.50000i
\(506\) 0 0
\(507\) 0.133530 + 0.286357i 0.133530 + 0.286357i
\(508\) −1.43492 + 1.20404i −1.43492 + 1.20404i
\(509\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0.768971 0.768971
\(513\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(514\) −0.246514 −0.246514
\(515\) −0.0302689 + 0.171663i −0.0302689 + 0.171663i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.657980 + 0.939693i −0.657980 + 0.939693i
\(520\) 0.370096 0.134704i 0.370096 0.134704i
\(521\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(522\) 0 0
\(523\) −0.906308 1.56977i −0.906308 1.56977i −0.819152 0.573576i \(-0.805556\pi\)
−0.0871557 0.996195i \(-0.527778\pi\)
\(524\) −0.257961 0.216455i −0.257961 0.216455i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 1.12973 0.302709i 1.12973 0.302709i
\(529\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(530\) 0.157980 + 0.273629i 0.157980 + 0.273629i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0.647489 0.543308i 0.647489 0.543308i
\(536\) −0.623257 0.226847i −0.623257 0.226847i
\(537\) 0 0
\(538\) 0 0
\(539\) 1.28558 1.28558
\(540\) −0.556149 0.794263i −0.556149 0.794263i
\(541\) 0.684040 0.684040 0.342020 0.939693i \(-0.388889\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(542\) −0.0524272 + 0.297330i −0.0524272 + 0.297330i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.794263 + 0.289088i −0.794263 + 0.289088i −0.707107 0.707107i \(-0.750000\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −0.112045 0.194068i −0.112045 0.194068i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −0.515668 + 1.92450i −0.515668 + 1.92450i
\(556\) −1.28651 1.07951i −1.28651 1.07951i
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −0.794263 0.289088i −0.794263 0.289088i −0.0871557 0.996195i \(-0.527778\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 0.335463 1.90250i 0.335463 1.90250i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(570\) −0.0151922 0.173648i −0.0151922 0.173648i
\(571\) −1.85083 0.673648i −1.85083 0.673648i −0.984808 0.173648i \(-0.944444\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(572\) 1.09540 0.919149i 1.09540 0.919149i
\(573\) −1.87223 0.163799i −1.87223 0.163799i
\(574\) 0 0
\(575\) 0 0
\(576\) −0.528552 0.629904i −0.528552 0.629904i
\(577\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(578\) 0.133530 + 0.112045i 0.133530 + 0.112045i
\(579\) −0.469139 + 1.75085i −0.469139 + 1.75085i
\(580\) 0 0
\(581\) 0 0
\(582\) 0.0638024 + 0.0638024i 0.0638024 + 0.0638024i
\(583\) 1.78508 + 1.49786i 1.78508 + 1.49786i
\(584\) 0 0
\(585\) −0.993464 0.573576i −0.993464 0.573576i
\(586\) −0.168372 + 0.291629i −0.168372 + 0.291629i
\(587\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(588\) −0.409777 0.878770i −0.409777 0.878770i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.314757 + 1.78508i −0.314757 + 1.78508i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0.183564 + 0.128533i 0.183564 + 0.128533i
\(595\) 0 0
\(596\) 0.115173 0.653180i 0.115173 0.653180i
\(597\) 1.25501 0.878770i 1.25501 0.878770i
\(598\) 0 0
\(599\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(600\) −0.196924 + 0.281237i −0.196924 + 0.281237i
\(601\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(602\) 0 0
\(603\) 0.660732 + 1.81535i 0.660732 + 1.81535i
\(604\) 0 0
\(605\) −0.500000 0.419550i −0.500000 0.419550i
\(606\) 0.291629 0.0781417i 0.291629 0.0781417i
\(607\) −0.146774 0.832395i −0.146774 0.832395i −0.965926 0.258819i \(-0.916667\pi\)
0.819152 0.573576i \(-0.194444\pi\)
\(608\) −0.0871557 0.494285i −0.0871557 0.494285i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 0.296905 0.108065i 0.296905 0.108065i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(618\) −0.0248895 + 0.0174278i −0.0248895 + 0.0174278i
\(619\) 0.223238 1.26604i 0.223238 1.26604i −0.642788 0.766044i \(-0.722222\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −0.945864 0.441063i −0.945864 0.441063i
\(625\) −0.939693 0.342020i −0.939693 0.342020i
\(626\) 0 0
\(627\) −0.543308 1.16513i −0.543308 1.16513i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −0.642788 1.11334i −0.642788 1.11334i −0.984808 0.173648i \(-0.944444\pi\)
0.342020 0.939693i \(-0.388889\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0.0428066 + 0.242769i 0.0428066 + 0.242769i
\(635\) −0.335463 1.90250i −0.335463 1.90250i
\(636\) 0.454885 1.69765i 0.454885 1.69765i
\(637\) −0.878770 0.737376i −0.878770 0.737376i
\(638\) 0 0
\(639\) 0 0
\(640\) −0.322621 + 0.558797i −0.322621 + 0.558797i
\(641\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(642\) 0.146774 + 0.0128410i 0.146774 + 0.0128410i
\(643\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 0.0596180 0.338111i 0.0596180 0.338111i
\(649\) 0 0
\(650\) −0.0347230 + 0.196924i −0.0347230 + 0.196924i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(654\) 0 0
\(655\) 0.326352 0.118782i 0.326352 0.118782i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(660\) −0.322621 + 1.20404i −0.322621 + 1.20404i
\(661\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −0.300767 + 0.173648i −0.300767 + 0.173648i
\(667\) 0 0
\(668\) −1.49273 + 0.543308i −1.49273 + 0.543308i
\(669\) −0.692377 1.48481i −0.692377 1.48481i
\(670\) 0.257961 0.216455i 0.257961 0.216455i
\(671\) 0 0
\(672\) 0 0
\(673\) 0.0302689 0.171663i 0.0302689 0.171663i −0.965926 0.258819i \(-0.916667\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(674\) 0.246514 0.246514
\(675\) 0.996195 0.0871557i 0.996195 0.0871557i
\(676\) −0.306359 −0.306359
\(677\) −0.345975 + 1.96212i −0.345975 + 1.96212i −0.0871557 + 0.996195i \(0.527778\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(678\) 0.275844 0.193148i 0.275844 0.193148i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.811160 1.15846i 0.811160 1.15846i
\(682\) 0 0
\(683\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(684\) −0.623257 + 0.742769i −0.623257 + 0.742769i
\(685\) 0 0
\(686\) 0 0
\(687\) 1.90250 0.509774i 1.90250 0.509774i
\(688\) 0 0
\(689\) −0.361075 2.04776i −0.361075 2.04776i
\(690\) 0 0
\(691\) −0.524005 0.439693i −0.524005 0.439693i 0.342020 0.939693i \(-0.388889\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(692\) −0.556149 0.963278i −0.556149 0.963278i
\(693\) 0 0
\(694\) 0 0
\(695\) 1.62760 0.592396i 1.62760 0.592396i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.250955 + 0.0913401i 0.250955 + 0.0913401i
\(699\) 0 0
\(700\) 0 0
\(701\) −1.96962 −1.96962 −0.984808 0.173648i \(-0.944444\pi\)
−0.984808 + 0.173648i \(0.944444\pi\)
\(702\) −0.0517540 0.193148i −0.0517540 0.193148i
\(703\) 1.99239 1.99239
\(704\) −0.183564 + 1.04104i −0.183564 + 1.04104i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −0.939693 + 0.342020i −0.939693 + 0.342020i −0.766044 0.642788i \(-0.777778\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0.256088 + 1.45235i 0.256088 + 1.45235i
\(716\) 0 0
\(717\) 0.486421 1.81535i 0.486421 1.81535i
\(718\) −0.171663 0.144043i −0.171663 0.144043i
\(719\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(720\) 0.895948 0.157980i 0.895948 0.157980i
\(721\) 0 0
\(722\) −0.163799 + 0.0596180i −0.163799 + 0.0596180i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) −0.00991603 0.113341i −0.00991603 0.113341i
\(727\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(728\) 0 0
\(729\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(734\) 0 0
\(735\) 0.996195 + 0.0871557i 0.996195 + 0.0871557i
\(736\) 0 0
\(737\) 1.24177 2.15081i 1.24177 2.15081i
\(738\) 0 0
\(739\) 0.173648 + 0.300767i 0.173648 + 0.300767i 0.939693 0.342020i \(-0.111111\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(740\) −1.47988 1.24177i −1.47988 1.24177i
\(741\) −0.296905 + 1.10806i −0.296905 + 1.10806i
\(742\) 0 0
\(743\) −0.0302689 0.171663i −0.0302689 0.171663i 0.965926 0.258819i \(-0.0833333\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(744\) 0 0
\(745\) 0.524005 + 0.439693i 0.524005 + 0.439693i
\(746\) 0.142788 + 0.247315i 0.142788 + 0.247315i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) −0.0736672 0.157980i −0.0736672 0.157980i
\(751\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(752\) 0 0
\(753\) −0.314757 0.146774i −0.314757 0.146774i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0.322621 + 0.117425i 0.322621 + 0.117425i
\(761\) 0.524005 0.439693i 0.524005 0.439693i −0.342020 0.939693i \(-0.611111\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0.193148 0.275844i 0.193148 0.275844i
\(763\) 0 0
\(764\) 0.911141 1.57814i 0.911141 1.57814i
\(765\) 0 0
\(766\) −0.173648 0.300767i −0.173648 0.300767i
\(767\) 0 0
\(768\) 0.685622 0.183712i 0.685622 0.183712i
\(769\) 0.300767 + 1.70574i 0.300767 + 1.70574i 0.642788 + 0.766044i \(0.277778\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(770\) 0 0
\(771\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(772\) −1.34635 1.12973i −1.34635 1.12973i
\(773\) 0.422618 + 0.731996i 0.422618 + 0.731996i 0.996195 0.0871557i \(-0.0277778\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −0.167001 + 0.0607835i −0.167001 + 0.0607835i
\(777\) 0 0
\(778\) −0.250955 + 0.210576i −0.250955 + 0.210576i
\(779\) 0 0
\(780\) 0.911141 0.637987i 0.911141 0.637987i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.909770 0.909770
\(785\) 0 0
\(786\) 0.0548658 + 0.0255844i 0.0548658 + 0.0255844i
\(787\) 1.32893 + 0.483690i 1.32893 + 0.483690i 0.906308 0.422618i \(-0.138889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −0.382240 + 0.220686i −0.382240 + 0.220686i
\(793\) 0 0
\(794\) 0 0
\(795\) 1.28171 + 1.28171i 1.28171 + 1.28171i
\(796\) 0.257961 + 1.46297i 0.257961 + 1.46297i
\(797\) 0.146774 + 0.832395i 0.146774 + 0.832395i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.250955 0.434667i −0.250955 0.434667i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −1.86603 0.163256i −1.86603 0.163256i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −0.103261 + 0.585625i −0.103261 + 0.585625i
\(809\) 1.87939 1.87939 0.939693 0.342020i \(-0.111111\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(810\) 0.133530 + 0.112045i 0.133530 + 0.112045i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0.150958 + 1.72546i 0.150958 + 1.72546i
\(814\) 0.419550 + 0.152704i 0.419550 + 0.152704i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(822\) 0 0
\(823\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(824\) −0.0103921 0.0589366i −0.0103921 0.0589366i
\(825\) −0.909039 0.909039i −0.909039 0.909039i
\(826\) 0 0
\(827\) −0.965926 1.67303i −0.965926 1.67303i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(828\) 0 0
\(829\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0.722596 0.606330i 0.722596 0.606330i
\(833\) 0 0
\(834\) 0.273629 + 0.127595i 0.273629 + 0.127595i
\(835\) 0.284489 1.61341i 0.284489 1.61341i
\(836\) 1.24651 1.24651
\(837\) 0 0
\(838\) −0.174311 −0.174311
\(839\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(840\) 0 0
\(841\) −0.939693 0.342020i −0.939693 0.342020i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0.157980 0.273629i 0.157980 0.273629i
\(846\) 0 0
\(847\) 0 0
\(848\) 1.26326 + 1.06000i 1.26326 + 1.06000i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(854\) 0 0
\(855\) −0.342020 0.939693i −0.342020 0.939693i
\(856\) −0.145096 + 0.251314i −0.145096 + 0.251314i
\(857\) 0.163799 0.0596180i 0.163799 0.0596180i −0.258819 0.965926i \(-0.583333\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(858\) −0.147447 + 0.210576i −0.147447 + 0.210576i
\(859\) 0.266044 0.223238i 0.266044 0.223238i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.845237 0.845237 0.422618 0.906308i \(-0.361111\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(864\) 0.411141 + 0.287884i 0.411141 + 0.287884i
\(865\) 1.14715 1.14715
\(866\) 0.0156683 0.0888595i 0.0156683 0.0888595i
\(867\) 0.906308 + 0.422618i 0.906308 + 0.422618i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −2.08248 + 0.757961i −2.08248 + 0.757961i
\(872\) 0 0
\(873\) 0.448288 + 0.258819i 0.448288 + 0.258819i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.245576 1.39273i −0.245576 1.39273i −0.819152 0.573576i \(-0.805556\pi\)
0.573576 0.819152i \(-0.305556\pi\)
\(878\) 0 0
\(879\) −0.500000 + 1.86603i −0.500000 + 1.86603i
\(880\) −0.895948 0.751790i −0.895948 0.751790i
\(881\) −0.984808 1.70574i −0.984808 1.70574i −0.642788 0.766044i \(-0.722222\pi\)
−0.342020 0.939693i \(-0.611111\pi\)
\(882\) 0.112045 + 0.133530i 0.112045 + 0.133530i
\(883\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.81535 + 0.660732i 1.81535 + 0.660732i 0.996195 + 0.0871557i \(0.0277778\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(888\) −0.0596180 0.681437i −0.0596180 0.681437i
\(889\) 0 0
\(890\) 0 0
\(891\) 1.20805 + 0.439693i 1.20805 + 0.439693i
\(892\) 1.58853 1.58853
\(893\) 0 0
\(894\) 0.0103921 + 0.118782i 0.0103921 + 0.118782i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.331628 + 0.911141i −0.331628 + 0.911141i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0.115173 + 0.653180i 0.115173 + 0.653180i
\(905\) 0 0
\(906\) 0 0
\(907\) −0.647489 0.543308i −0.647489 0.543308i 0.258819 0.965926i \(-0.416667\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(908\) 0.685622 + 1.18753i 0.685622 + 1.18753i
\(909\) 1.50000 0.866025i 1.50000 0.866025i
\(910\) 0 0
\(911\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(912\) −0.384485 0.824531i −0.384485 0.824531i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.331628 + 1.88076i −0.331628 + 1.88076i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.87939 −1.87939 −0.939693 0.342020i \(-0.888889\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(920\) 0 0
\(921\) 1.48481 1.03967i 1.48481 1.03967i
\(922\) 0.163799 + 0.0596180i 0.163799 + 0.0596180i
\(923\) 0 0
\(924\) 0 0
\(925\) 1.87223 0.681437i 1.87223 0.681437i
\(926\) 0 0
\(927\) −0.112045 + 0.133530i −0.112045 + 0.133530i
\(928\) 0 0
\(929\) −1.17365 0.984808i −1.17365 0.984808i −0.173648 0.984808i \(-0.555556\pi\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) −0.173648 0.984808i −0.173648 0.984808i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0.387865 + 0.0683910i 0.387865 + 0.0683910i
\(937\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −0.133530 + 0.112045i −0.133530 + 0.112045i
\(951\) 0.597672 + 1.28171i 0.597672 + 1.28171i
\(952\) 0 0
\(953\) −0.965926 + 1.67303i −0.965926 + 1.67303i −0.258819 + 0.965926i \(0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(954\) 0.315960i 0.315960i
\(955\) 0.939693 + 1.62760i 0.939693 + 1.62760i
\(956\) 1.39595 + 1.17134i 1.39595 + 1.17134i
\(957\) 0 0
\(958\) −0.0207051 0.117425i −0.0207051 0.117425i
\(959\) 0 0
\(960\) −0.212822 + 0.794263i −0.212822 + 0.794263i
\(961\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(962\) −0.199201 0.345026i −0.199201 0.345026i
\(963\) 0.832395 0.146774i 0.832395 0.146774i
\(964\) 0 0
\(965\) 1.70330 0.619951i 1.70330 0.619951i
\(966\) 0 0
\(967\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(968\) 0.210576 + 0.0766435i 0.210576 + 0.0766435i
\(969\) 0 0
\(970\) 0.0156683 0.0888595i 0.0156683 0.0888595i
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) −0.0845076 0.965926i −0.0845076 0.965926i
\(973\) 0 0
\(974\) 0.0428066 0.242769i 0.0428066 0.242769i
\(975\) 0.0999810 + 1.14279i 0.0999810 + 1.14279i
\(976\) 0 0
\(977\) 1.25501 1.05308i 1.25501 1.05308i 0.258819 0.965926i \(-0.416667\pi\)
0.996195 0.0871557i \(-0.0277778\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.484808 + 0.839712i −0.484808 + 0.839712i
\(981\) 0 0
\(982\) 0.133530 + 0.231281i 0.133530 + 0.231281i
\(983\) 1.25501 + 1.05308i 1.25501 + 1.05308i 0.996195 + 0.0871557i \(0.0277778\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −0.852069 0.714971i −0.852069 0.714971i
\(989\) 0 0
\(990\) 0.224091i 0.224091i
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.43969 0.524005i −1.43969 0.524005i
\(996\) 0 0
\(997\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(998\) 0.119236 0.119236
\(999\) −1.40883 + 1.40883i −1.40883 + 1.40883i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2565.1.dy.d.2374.3 yes 24
5.4 even 2 inner 2565.1.dy.d.2374.2 yes 24
19.18 odd 2 inner 2565.1.dy.d.2374.2 yes 24
27.13 even 9 inner 2565.1.dy.d.94.3 yes 24
95.94 odd 2 CM 2565.1.dy.d.2374.3 yes 24
135.94 even 18 inner 2565.1.dy.d.94.2 24
513.94 odd 18 inner 2565.1.dy.d.94.2 24
2565.94 odd 18 inner 2565.1.dy.d.94.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2565.1.dy.d.94.2 24 135.94 even 18 inner
2565.1.dy.d.94.2 24 513.94 odd 18 inner
2565.1.dy.d.94.3 yes 24 27.13 even 9 inner
2565.1.dy.d.94.3 yes 24 2565.94 odd 18 inner
2565.1.dy.d.2374.2 yes 24 5.4 even 2 inner
2565.1.dy.d.2374.2 yes 24 19.18 odd 2 inner
2565.1.dy.d.2374.3 yes 24 1.1 even 1 trivial
2565.1.dy.d.2374.3 yes 24 95.94 odd 2 CM