Properties

Label 2-255162-1.1-c1-0-32
Degree $2$
Conductor $255162$
Sign $-1$
Analytic cond. $2037.47$
Root an. cond. $45.1384$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 3·7-s − 8-s + 9-s − 10-s + 3·11-s + 12-s − 5·13-s − 3·14-s + 15-s + 16-s + 8·17-s − 18-s − 19-s + 20-s + 3·21-s − 3·22-s − 23-s − 24-s − 4·25-s + 5·26-s + 27-s + 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 1.13·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.904·11-s + 0.288·12-s − 1.38·13-s − 0.801·14-s + 0.258·15-s + 1/4·16-s + 1.94·17-s − 0.235·18-s − 0.229·19-s + 0.223·20-s + 0.654·21-s − 0.639·22-s − 0.208·23-s − 0.204·24-s − 4/5·25-s + 0.980·26-s + 0.192·27-s + 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 255162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 255162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(255162\)    =    \(2 \cdot 3 \cdot 23 \cdot 43^{2}\)
Sign: $-1$
Analytic conductor: \(2037.47\)
Root analytic conductor: \(45.1384\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 255162,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
23 \( 1 + T \)
43 \( 1 \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + T + p T^{2} \) 1.19.b
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 2 T + p T^{2} \) 1.41.c
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.06168696655476, −12.47423562973858, −11.98212544108127, −11.71873307971099, −11.32317867507868, −10.50468694171368, −10.18813779884936, −9.781600275279814, −9.376798188650664, −8.959449502858950, −8.297604702829249, −7.958291607986848, −7.557450950424034, −7.153219850660534, −6.597341524807885, −5.862510332096004, −5.436838700246812, −5.038825172739177, −4.103219391951257, −3.997518345885649, −3.008402161644326, −2.631877635420840, −1.907976971251771, −1.509816471253995, −1.011932714057804, 0, 1.011932714057804, 1.509816471253995, 1.907976971251771, 2.631877635420840, 3.008402161644326, 3.997518345885649, 4.103219391951257, 5.038825172739177, 5.436838700246812, 5.862510332096004, 6.597341524807885, 7.153219850660534, 7.557450950424034, 7.958291607986848, 8.297604702829249, 8.959449502858950, 9.376798188650664, 9.781600275279814, 10.18813779884936, 10.50468694171368, 11.32317867507868, 11.71873307971099, 11.98212544108127, 12.47423562973858, 13.06168696655476

Graph of the $Z$-function along the critical line