L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s + (−0.499 − 0.866i)12-s + 13-s + (−0.499 − 0.866i)16-s + (1 + 1.73i)19-s + (0.499 + 0.866i)21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (0.499 + 0.866i)28-s + (0.5 − 0.866i)31-s + 0.999·36-s + (0.5 + 0.866i)37-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)3-s + (−0.5 + 0.866i)4-s + (0.5 − 0.866i)7-s + (−0.499 − 0.866i)9-s + (−0.499 − 0.866i)12-s + 13-s + (−0.499 − 0.866i)16-s + (1 + 1.73i)19-s + (0.499 + 0.866i)21-s + (−0.5 + 0.866i)25-s + 0.999·27-s + (0.499 + 0.866i)28-s + (0.5 − 0.866i)31-s + 0.999·36-s + (0.5 + 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2541 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0633 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9614306166\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9614306166\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (0.5 - 0.866i)T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
| 11 | \( 1 \) |
good | 2 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.439543618817687144126469835382, −8.381993257289067165455865986824, −7.942877846003719602772132456213, −7.08492906487025555493090533879, −5.99042005758644570158940532015, −5.30566183967953850175850123452, −4.23086597230805776665375564311, −3.89847378477002643164069590218, −3.07135451202125401810209076042, −1.21766498507176773728112996384,
0.843402172575182999960874410668, 1.87807375781189837977175512605, 2.89552595622373763303243230717, 4.46783358296685124686944396522, 5.11579317207908107271756250351, 5.88350100019413366994995819911, 6.35777602824250233356988168181, 7.33782981579372398610922781935, 8.199364225079009780904544783172, 8.931506610858884151377457095874