sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2541, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([3,4,0]))
pari:[g,chi] = znchar(Mod(2300,2541))
\(\chi_{2541}(485,\cdot)\)
\(\chi_{2541}(2300,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((848,1816,2059)\) → \((-1,e\left(\frac{2}{3}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 2541 }(2300, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
sage:chi.jacobi_sum(n)