Properties

Label 2.2541.12t18.c.a
Dimension $2$
Group $C_6\times S_3$
Conductor $2541$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_6\times S_3$
Conductor: \(2541\)\(\medspace = 3 \cdot 7 \cdot 11^{2} \)
Artin stem field: Galois closure of 12.0.45399026464443729.1
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Determinant: 1.21.6t1.a.b
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.17787.1

Defining polynomial

$f(x)$$=$ \( x^{12} - 6 x^{11} + 11 x^{10} - 66 x^{8} + 198 x^{7} - 231 x^{6} + 66 x^{5} + 770 x^{4} - 1452 x^{3} + \cdots + 1147 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: \( x^{6} + 2x^{4} + 10x^{2} + 3x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 a^{5} + 12 a^{4} + 5 a^{3} + 6 a + 5 + \left(7 a^{5} + 9 a^{4} + 5 a^{3} + 11 a^{2} + 15 a + 14\right)\cdot 17 + \left(16 a^{5} + a^{4} + 13 a^{3} + a^{2} + 7 a + 11\right)\cdot 17^{2} + \left(a^{5} + 8 a^{4} + 10 a^{3} + 6 a^{2} + 15 a + 2\right)\cdot 17^{3} + \left(16 a^{5} + 9 a^{4} + 5 a^{2} + 7 a + 16\right)\cdot 17^{4} + \left(11 a^{5} + 16 a^{4} + 2 a^{3} + 3 a^{2} + 12 a + 4\right)\cdot 17^{5} + \left(13 a^{5} + 12 a^{4} + a^{3} + 5 a + 4\right)\cdot 17^{6} + \left(10 a^{5} + 7 a^{4} + 6 a^{3} + 7 a^{2} + 8 a + 7\right)\cdot 17^{7} + \left(3 a^{5} + 2 a^{4} + 14 a^{3} + 8 a^{2} + 2 a + 5\right)\cdot 17^{8} + \left(6 a^{5} + 7 a^{4} + 4 a^{2} + 4 a + 5\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 a^{5} + 5 a^{4} + 7 a^{3} + 14 a^{2} + 9 a + 12 + \left(7 a^{5} + 3 a^{4} + 6 a^{3} + 4 a^{2} + 4 a\right)\cdot 17 + \left(7 a^{5} + 7 a^{4} + a^{3} + 14 a^{2} + 5 a + 6\right)\cdot 17^{2} + \left(10 a^{5} + 13 a^{4} + a^{3} + 7 a^{2} + 12 a + 16\right)\cdot 17^{3} + \left(a^{5} + a^{4} + 12 a^{3} + 6 a^{2} + 13 a + 13\right)\cdot 17^{4} + \left(2 a^{5} + 5 a^{4} + 7 a^{3} + 2 a^{2} + 7\right)\cdot 17^{5} + \left(16 a^{5} + 11 a^{3} + 2 a^{2} + 3 a + 9\right)\cdot 17^{6} + \left(2 a^{5} + 4 a^{4} + 15 a^{3} + 11 a^{2} + 3 a + 8\right)\cdot 17^{7} + \left(12 a^{4} + 15 a^{3} + 9 a + 3\right)\cdot 17^{8} + \left(11 a^{5} + 9 a^{4} + 16 a^{3} + 16 a^{2} + 9 a + 8\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 a^{5} + 8 a^{4} + 11 a^{3} + 9 a + 8 + \left(7 a^{5} + a^{4} + 9 a^{3} + 9 a^{2} + 4 a + 10\right)\cdot 17 + \left(13 a^{5} + 2 a^{4} + 12 a^{3} + 4 a^{2} + 14 a\right)\cdot 17^{2} + \left(a^{5} + 11 a^{4} + 10 a^{3} + 7 a^{2} + a + 5\right)\cdot 17^{3} + \left(8 a^{5} + 13 a^{4} + 9 a^{3} + 12 a^{2} + 16 a + 3\right)\cdot 17^{4} + \left(15 a^{5} + 12 a^{4} + 14 a^{3} + 10 a^{2} + 13 a + 7\right)\cdot 17^{5} + \left(10 a^{5} + 7 a^{4} + 14 a^{3} + 6 a^{2} + 5 a + 13\right)\cdot 17^{6} + \left(5 a^{5} + 9 a^{4} + 6 a^{3} + 13 a^{2} + 12 a + 4\right)\cdot 17^{7} + \left(8 a^{5} + 13 a^{4} + 11 a^{3} + 7 a^{2} + 6 a + 2\right)\cdot 17^{8} + \left(12 a^{4} + 7 a^{3} + 15 a^{2} + 12 a\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 a^{5} + 5 a^{4} + a^{3} + 10 a^{2} + 5 a + 10 + \left(10 a^{5} + 3 a^{3} + 4 a^{2} + 2 a + 11\right)\cdot 17 + \left(2 a^{4} + 10 a^{3} + 10 a^{2} + 6 a + 9\right)\cdot 17^{2} + \left(5 a^{4} + 10 a^{3} + 8 a^{2} + 14 a + 14\right)\cdot 17^{3} + \left(2 a^{5} + 7 a^{4} + 7 a^{3} + 10 a^{2} + 2 a + 15\right)\cdot 17^{4} + \left(14 a^{5} + 3 a^{4} + 7 a^{3} + 15 a^{2} + a\right)\cdot 17^{5} + \left(15 a^{5} + 4 a^{4} + 5 a^{3} + 16 a^{2} + 6 a + 11\right)\cdot 17^{6} + \left(13 a^{5} + 7 a^{4} + 9 a^{3} + 4 a + 9\right)\cdot 17^{7} + \left(6 a^{5} + 16 a^{4} + 9 a^{3} + 10 a^{2} + 4 a\right)\cdot 17^{8} + \left(7 a^{5} + 14 a^{4} + 7 a^{3} + 5 a^{2} + a + 6\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 a^{5} + 7 a^{4} + 9 a^{3} + 10 a^{2} + 3 a + 3 + \left(15 a^{5} + 13 a^{4} + 7 a^{3} + 7 a^{2} + 10 a + 14\right)\cdot 17 + \left(8 a^{5} + 7 a^{4} + 5 a^{3} + 9 a^{2} + 5 a + 6\right)\cdot 17^{2} + \left(6 a^{5} + 15 a^{4} + 5 a^{3} + 7 a + 15\right)\cdot 17^{3} + \left(13 a^{5} + 7 a^{4} + 14 a^{3}\right)\cdot 17^{4} + \left(8 a^{4} + a^{3} + 16 a^{2} + 15 a + 6\right)\cdot 17^{5} + \left(2 a^{5} + 12 a^{4} + 14 a^{2} + 7 a + 5\right)\cdot 17^{6} + \left(5 a^{4} + 9 a^{3} + 4 a^{2} + 9 a + 9\right)\cdot 17^{7} + \left(10 a^{5} + 5 a^{4} + 8 a^{3} + 6 a^{2} + 3 a + 3\right)\cdot 17^{8} + \left(15 a^{5} + 9 a^{4} + 9 a^{3} + 12 a^{2} + 6 a + 12\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( a^{5} + 14 a^{4} + a^{3} + 2 a + 16 + \left(2 a^{5} + 5 a^{4} + 2 a^{3} + 14 a^{2} + 14 a + 16\right)\cdot 17 + \left(4 a^{5} + 13 a^{4} + 8 a^{3} + 10 a^{2} + 11 a + 15\right)\cdot 17^{2} + \left(13 a^{5} + 14 a^{4} + 12 a^{3} + 3 a^{2} + 16 a + 13\right)\cdot 17^{3} + \left(9 a^{5} + 10 a^{4} + 6 a^{3} + 16 a^{2} + 9 a\right)\cdot 17^{4} + \left(6 a^{5} + 4 a^{4} + 2 a^{2} + 7 a + 7\right)\cdot 17^{5} + \left(9 a^{5} + 13 a^{4} + a^{3} + 10 a^{2} + 5 a + 7\right)\cdot 17^{6} + \left(16 a^{4} + 4 a^{3} + 13 a^{2} + 13 a + 11\right)\cdot 17^{7} + \left(5 a^{5} + 8 a^{3} + 7 a + 1\right)\cdot 17^{8} + \left(10 a^{5} + 14 a^{4} + 8 a^{3} + 14 a^{2} + 2\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 5 a^{5} + 12 a^{4} + 10 a^{3} + 3 a^{2} + 8 a + 6 + \left(9 a^{5} + 13 a^{4} + 10 a^{3} + 12 a^{2} + 12 a + 16\right)\cdot 17 + \left(9 a^{5} + 9 a^{4} + 15 a^{3} + 2 a^{2} + 11 a + 10\right)\cdot 17^{2} + \left(6 a^{5} + 3 a^{4} + 15 a^{3} + 9 a^{2} + 4 a\right)\cdot 17^{3} + \left(15 a^{5} + 15 a^{4} + 4 a^{3} + 10 a^{2} + 3 a + 3\right)\cdot 17^{4} + \left(14 a^{5} + 11 a^{4} + 9 a^{3} + 14 a^{2} + 16 a + 9\right)\cdot 17^{5} + \left(16 a^{4} + 5 a^{3} + 14 a^{2} + 13 a + 7\right)\cdot 17^{6} + \left(14 a^{5} + 12 a^{4} + a^{3} + 5 a^{2} + 13 a + 8\right)\cdot 17^{7} + \left(16 a^{5} + 4 a^{4} + a^{3} + 16 a^{2} + 7 a + 13\right)\cdot 17^{8} + \left(5 a^{5} + 7 a^{4} + 7 a + 8\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 15 a^{5} + 5 a^{4} + 12 a^{3} + 11 a + 13 + \left(9 a^{5} + 7 a^{4} + 11 a^{3} + 6 a^{2} + a + 2\right)\cdot 17 + \left(15 a^{4} + 3 a^{3} + 15 a^{2} + 9 a + 5\right)\cdot 17^{2} + \left(15 a^{5} + 8 a^{4} + 6 a^{3} + 10 a^{2} + a + 14\right)\cdot 17^{3} + \left(7 a^{4} + 16 a^{3} + 11 a^{2} + 9 a\right)\cdot 17^{4} + \left(5 a^{5} + 14 a^{3} + 13 a^{2} + 4 a + 12\right)\cdot 17^{5} + \left(3 a^{5} + 4 a^{4} + 15 a^{3} + 16 a^{2} + 11 a + 12\right)\cdot 17^{6} + \left(6 a^{5} + 9 a^{4} + 10 a^{3} + 9 a^{2} + 8 a + 9\right)\cdot 17^{7} + \left(13 a^{5} + 14 a^{4} + 2 a^{3} + 8 a^{2} + 14 a + 11\right)\cdot 17^{8} + \left(10 a^{5} + 9 a^{4} + 16 a^{3} + 12 a^{2} + 12 a + 11\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 7 a^{5} + 12 a^{4} + 16 a^{3} + 7 a^{2} + 12 a + 8 + \left(6 a^{5} + 16 a^{4} + 13 a^{3} + 12 a^{2} + 14 a + 5\right)\cdot 17 + \left(16 a^{5} + 14 a^{4} + 6 a^{3} + 6 a^{2} + 10 a + 7\right)\cdot 17^{2} + \left(16 a^{5} + 11 a^{4} + 6 a^{3} + 8 a^{2} + 2 a + 2\right)\cdot 17^{3} + \left(14 a^{5} + 9 a^{4} + 9 a^{3} + 6 a^{2} + 14 a + 1\right)\cdot 17^{4} + \left(2 a^{5} + 13 a^{4} + 9 a^{3} + a^{2} + 15 a + 16\right)\cdot 17^{5} + \left(a^{5} + 12 a^{4} + 11 a^{3} + 10 a + 5\right)\cdot 17^{6} + \left(3 a^{5} + 9 a^{4} + 7 a^{3} + 16 a^{2} + 12 a + 7\right)\cdot 17^{7} + \left(10 a^{5} + 7 a^{3} + 6 a^{2} + 12 a + 16\right)\cdot 17^{8} + \left(9 a^{5} + 2 a^{4} + 9 a^{3} + 11 a^{2} + 15 a + 10\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 3 a^{5} + 9 a^{4} + 6 a^{3} + 8 a + 10 + \left(9 a^{5} + 15 a^{4} + 7 a^{3} + 8 a^{2} + 12 a + 6\right)\cdot 17 + \left(3 a^{5} + 14 a^{4} + 4 a^{3} + 12 a^{2} + 2 a + 16\right)\cdot 17^{2} + \left(15 a^{5} + 5 a^{4} + 6 a^{3} + 9 a^{2} + 15 a + 11\right)\cdot 17^{3} + \left(8 a^{5} + 3 a^{4} + 7 a^{3} + 4 a^{2} + 13\right)\cdot 17^{4} + \left(a^{5} + 4 a^{4} + 2 a^{3} + 6 a^{2} + 3 a + 9\right)\cdot 17^{5} + \left(6 a^{5} + 9 a^{4} + 2 a^{3} + 10 a^{2} + 11 a + 3\right)\cdot 17^{6} + \left(11 a^{5} + 7 a^{4} + 10 a^{3} + 3 a^{2} + 4 a + 12\right)\cdot 17^{7} + \left(8 a^{5} + 3 a^{4} + 5 a^{3} + 9 a^{2} + 10 a + 14\right)\cdot 17^{8} + \left(16 a^{5} + 4 a^{4} + 9 a^{3} + a^{2} + 4 a + 16\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 16 a^{5} + 3 a^{4} + 16 a^{3} + 15 a + 2 + \left(14 a^{5} + 11 a^{4} + 14 a^{3} + 3 a^{2} + 2 a\right)\cdot 17 + \left(12 a^{5} + 3 a^{4} + 8 a^{3} + 6 a^{2} + 5 a + 1\right)\cdot 17^{2} + \left(3 a^{5} + 2 a^{4} + 4 a^{3} + 13 a^{2} + 3\right)\cdot 17^{3} + \left(7 a^{5} + 6 a^{4} + 10 a^{3} + 7 a + 16\right)\cdot 17^{4} + \left(10 a^{5} + 12 a^{4} + 16 a^{3} + 14 a^{2} + 9 a + 9\right)\cdot 17^{5} + \left(7 a^{5} + 3 a^{4} + 15 a^{3} + 6 a^{2} + 11 a + 9\right)\cdot 17^{6} + \left(16 a^{5} + 12 a^{3} + 3 a^{2} + 3 a + 5\right)\cdot 17^{7} + \left(11 a^{5} + 16 a^{4} + 8 a^{3} + 16 a^{2} + 9 a + 15\right)\cdot 17^{8} + \left(6 a^{5} + 2 a^{4} + 8 a^{3} + 2 a^{2} + 16 a + 14\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 5 a^{5} + 10 a^{4} + 8 a^{3} + 7 a^{2} + 14 a + 15 + \left(a^{5} + 3 a^{4} + 9 a^{3} + 9 a^{2} + 6 a + 2\right)\cdot 17 + \left(8 a^{5} + 9 a^{4} + 11 a^{3} + 7 a^{2} + 11 a + 10\right)\cdot 17^{2} + \left(10 a^{5} + a^{4} + 11 a^{3} + 16 a^{2} + 9 a + 1\right)\cdot 17^{3} + \left(3 a^{5} + 9 a^{4} + 2 a^{3} + 16 a^{2} + 16 a + 16\right)\cdot 17^{4} + \left(16 a^{5} + 8 a^{4} + 15 a^{3} + a + 10\right)\cdot 17^{5} + \left(14 a^{5} + 4 a^{4} + 16 a^{3} + 2 a^{2} + 9 a + 11\right)\cdot 17^{6} + \left(16 a^{5} + 11 a^{4} + 7 a^{3} + 12 a^{2} + 7 a + 7\right)\cdot 17^{7} + \left(6 a^{5} + 11 a^{4} + 8 a^{3} + 10 a^{2} + 13 a + 13\right)\cdot 17^{8} + \left(a^{5} + 7 a^{4} + 7 a^{3} + 4 a^{2} + 10 a + 4\right)\cdot 17^{9} +O(17^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,8)(2,9,5,7,4,12)(3,10)(6,11)$
$(1,8)(2,7)(3,10)(4,9)(5,12)(6,11)$
$(1,11,3,8,6,10)(2,12,4,7,5,9)$
$(1,12)(2,10)(3,7)(4,11)(5,8)(6,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,10)(4,9)(5,12)(6,11)$$-2$
$3$$2$$(1,12)(2,10)(3,7)(4,11)(5,8)(6,9)$$0$
$3$$2$$(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)$$0$
$1$$3$$(1,3,6)(2,4,5)(7,9,12)(8,10,11)$$2 \zeta_{3}$
$1$$3$$(1,6,3)(2,5,4)(7,12,9)(8,11,10)$$-2 \zeta_{3} - 2$
$2$$3$$(2,5,4)(7,12,9)$$-\zeta_{3}$
$2$$3$$(2,4,5)(7,9,12)$$\zeta_{3} + 1$
$2$$3$$(1,3,6)(2,5,4)(7,12,9)(8,10,11)$$-1$
$1$$6$$(1,11,3,8,6,10)(2,12,4,7,5,9)$$2 \zeta_{3} + 2$
$1$$6$$(1,10,6,8,3,11)(2,9,5,7,4,12)$$-2 \zeta_{3}$
$2$$6$$(1,8)(2,9,5,7,4,12)(3,10)(6,11)$$-\zeta_{3} - 1$
$2$$6$$(1,8)(2,12,4,7,5,9)(3,10)(6,11)$$\zeta_{3}$
$2$$6$$(1,11,3,8,6,10)(2,9,5,7,4,12)$$1$
$3$$6$$(1,5,3,2,6,4)(7,11,9,8,12,10)$$0$
$3$$6$$(1,4,6,2,3,5)(7,10,12,8,9,11)$$0$
$3$$6$$(1,9,6,7,3,12)(2,10,5,8,4,11)$$0$
$3$$6$$(1,12,3,7,6,9)(2,11,4,8,5,10)$$0$