Properties

Label 2-25350-1.1-c1-0-18
Degree $2$
Conductor $25350$
Sign $1$
Analytic cond. $202.420$
Root an. cond. $14.2274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 3·7-s − 8-s + 9-s + 3·11-s + 12-s + 3·14-s + 16-s + 3·17-s − 18-s − 3·21-s − 3·22-s + 4·23-s − 24-s + 27-s − 3·28-s + 5·29-s + 3·31-s − 32-s + 3·33-s − 3·34-s + 36-s + 12·37-s − 2·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 1.13·7-s − 0.353·8-s + 1/3·9-s + 0.904·11-s + 0.288·12-s + 0.801·14-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 0.654·21-s − 0.639·22-s + 0.834·23-s − 0.204·24-s + 0.192·27-s − 0.566·28-s + 0.928·29-s + 0.538·31-s − 0.176·32-s + 0.522·33-s − 0.514·34-s + 1/6·36-s + 1.97·37-s − 0.312·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(202.420\)
Root analytic conductor: \(14.2274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.155354989\)
\(L(\frac12)\) \(\approx\) \(2.155354989\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.32654457217338, −14.97689472519538, −14.28375303280795, −13.81476933504325, −13.20766082705588, −12.52306229267742, −12.26675642127223, −11.49174376201822, −10.94885952016994, −10.21007000104575, −9.773491866289871, −9.288512891615707, −8.954322977531755, −8.098120318370264, −7.762375870768150, −6.901741047248674, −6.520369141466702, −6.028193068023840, −5.102779080036115, −4.250299641749215, −3.565798531406233, −2.959640454921020, −2.409052878958781, −1.298766109775751, −0.6971587212875826, 0.6971587212875826, 1.298766109775751, 2.409052878958781, 2.959640454921020, 3.565798531406233, 4.250299641749215, 5.102779080036115, 6.028193068023840, 6.520369141466702, 6.901741047248674, 7.762375870768150, 8.098120318370264, 8.954322977531755, 9.288512891615707, 9.773491866289871, 10.21007000104575, 10.94885952016994, 11.49174376201822, 12.26675642127223, 12.52306229267742, 13.20766082705588, 13.81476933504325, 14.28375303280795, 14.97689472519538, 15.32654457217338

Graph of the $Z$-function along the critical line