Properties

Label 2-25350-1.1-c1-0-11
Degree $2$
Conductor $25350$
Sign $1$
Analytic cond. $202.420$
Root an. cond. $14.2274$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s + 4·7-s − 8-s + 9-s − 4·11-s + 12-s − 4·14-s + 16-s − 4·17-s − 18-s − 7·19-s + 4·21-s + 4·22-s + 4·23-s − 24-s + 27-s + 4·28-s + 5·29-s − 4·31-s − 32-s − 4·33-s + 4·34-s + 36-s − 9·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s − 1.20·11-s + 0.288·12-s − 1.06·14-s + 1/4·16-s − 0.970·17-s − 0.235·18-s − 1.60·19-s + 0.872·21-s + 0.852·22-s + 0.834·23-s − 0.204·24-s + 0.192·27-s + 0.755·28-s + 0.928·29-s − 0.718·31-s − 0.176·32-s − 0.696·33-s + 0.685·34-s + 1/6·36-s − 1.47·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 25350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(25350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(202.420\)
Root analytic conductor: \(14.2274\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 25350,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.801915408\)
\(L(\frac12)\) \(\approx\) \(1.801915408\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 - 5 T + p T^{2} \) 1.41.af
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 12 T + p T^{2} \) 1.73.m
79 \( 1 - 7 T + p T^{2} \) 1.79.ah
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.37739097491459, −14.87102947656113, −14.46142420013576, −13.80304474930754, −13.14437252445432, −12.78546281546932, −12.04368050986940, −11.29640308044221, −10.97420076428458, −10.43522093993666, −10.02455296995505, −9.066961987714363, −8.509513174277362, −8.391575339476529, −7.793215207825983, −7.000835618991253, −6.718398983434509, −5.632536752233184, −5.020340718520190, −4.527486613890115, −3.719227032964508, −2.746138847282986, −2.138737124194310, −1.703363722993133, −0.5548480554930588, 0.5548480554930588, 1.703363722993133, 2.138737124194310, 2.746138847282986, 3.719227032964508, 4.527486613890115, 5.020340718520190, 5.632536752233184, 6.718398983434509, 7.000835618991253, 7.793215207825983, 8.391575339476529, 8.509513174277362, 9.066961987714363, 10.02455296995505, 10.43522093993666, 10.97420076428458, 11.29640308044221, 12.04368050986940, 12.78546281546932, 13.14437252445432, 13.80304474930754, 14.46142420013576, 14.87102947656113, 15.37739097491459

Graph of the $Z$-function along the critical line