Properties

Label 2-248430-1.1-c1-0-130
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 5·11-s + 12-s + 15-s + 16-s + 7·17-s − 18-s + 20-s − 5·22-s − 7·23-s − 24-s + 25-s + 27-s − 30-s + 10·31-s − 32-s + 5·33-s − 7·34-s + 36-s + 11·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.50·11-s + 0.288·12-s + 0.258·15-s + 1/4·16-s + 1.69·17-s − 0.235·18-s + 0.223·20-s − 1.06·22-s − 1.45·23-s − 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.182·30-s + 1.79·31-s − 0.176·32-s + 0.870·33-s − 1.20·34-s + 1/6·36-s + 1.80·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.268637551\)
\(L(\frac12)\) \(\approx\) \(4.268637551\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 5 T + p T^{2} \) 1.11.af
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 13 T + p T^{2} \) 1.59.n
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 17 T + p T^{2} \) 1.89.ar
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.75867658498995, −12.26165417178417, −11.91426585534857, −11.56042460061274, −10.97564389313954, −10.24801575212683, −9.900205235670268, −9.695530157614823, −9.245301831668614, −8.587926295945721, −8.263402221666017, −7.739319648744020, −7.420912755148909, −6.598622965189286, −6.281523102885395, −5.967719509442056, −5.209025614367925, −4.551655195807703, −3.952108055305417, −3.513406870148606, −2.898478603972527, −2.316276869804778, −1.698698226304670, −1.122647971400325, −0.6887114031740275, 0.6887114031740275, 1.122647971400325, 1.698698226304670, 2.316276869804778, 2.898478603972527, 3.513406870148606, 3.952108055305417, 4.551655195807703, 5.209025614367925, 5.967719509442056, 6.281523102885395, 6.598622965189286, 7.420912755148909, 7.739319648744020, 8.263402221666017, 8.587926295945721, 9.245301831668614, 9.695530157614823, 9.900205235670268, 10.24801575212683, 10.97564389313954, 11.56042460061274, 11.91426585534857, 12.26165417178417, 12.75867658498995

Graph of the $Z$-function along the critical line