Properties

Label 2-244608-1.1-c1-0-112
Degree $2$
Conductor $244608$
Sign $-1$
Analytic cond. $1953.20$
Root an. cond. $44.1950$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 3·11-s − 13-s − 15-s + 8·17-s + 2·19-s + 6·23-s − 4·25-s − 27-s − 29-s + 31-s + 3·33-s − 2·37-s + 39-s + 10·41-s + 45-s + 2·47-s − 8·51-s + 3·53-s − 3·55-s − 2·57-s − 9·59-s − 2·61-s − 65-s − 10·67-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 0.904·11-s − 0.277·13-s − 0.258·15-s + 1.94·17-s + 0.458·19-s + 1.25·23-s − 4/5·25-s − 0.192·27-s − 0.185·29-s + 0.179·31-s + 0.522·33-s − 0.328·37-s + 0.160·39-s + 1.56·41-s + 0.149·45-s + 0.291·47-s − 1.12·51-s + 0.412·53-s − 0.404·55-s − 0.264·57-s − 1.17·59-s − 0.256·61-s − 0.124·65-s − 1.22·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244608\)    =    \(2^{7} \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1953.20\)
Root analytic conductor: \(44.1950\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 244608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.11461160643692, −12.56909048469976, −12.12240784941587, −11.90421055488543, −11.11190610186947, −10.84396628241760, −10.28876934772660, −9.937868094717443, −9.465544837758473, −9.077372100607585, −8.343004406931598, −7.763233810111946, −7.440233980599100, −7.137477713032844, −6.135572889006337, −6.019204753511616, −5.376141557034701, −5.090971797520493, −4.556333599861209, −3.784127877023861, −3.236658711735691, −2.731449479934721, −2.107378851269071, −1.292888106275110, −0.8791504682570172, 0, 0.8791504682570172, 1.292888106275110, 2.107378851269071, 2.731449479934721, 3.236658711735691, 3.784127877023861, 4.556333599861209, 5.090971797520493, 5.376141557034701, 6.019204753511616, 6.135572889006337, 7.137477713032844, 7.440233980599100, 7.763233810111946, 8.343004406931598, 9.077372100607585, 9.465544837758473, 9.937868094717443, 10.28876934772660, 10.84396628241760, 11.11190610186947, 11.90421055488543, 12.12240784941587, 12.56909048469976, 13.11461160643692

Graph of the $Z$-function along the critical line