Properties

Label 2-23562-1.1-c1-0-21
Degree $2$
Conductor $23562$
Sign $-1$
Analytic cond. $188.143$
Root an. cond. $13.7165$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 7-s + 8-s − 2·10-s − 11-s − 4·13-s − 14-s + 16-s + 17-s + 4·19-s − 2·20-s − 22-s + 8·23-s − 25-s − 4·26-s − 28-s − 8·29-s − 4·31-s + 32-s + 34-s + 2·35-s + 6·37-s + 4·38-s − 2·40-s + 6·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s + 0.353·8-s − 0.632·10-s − 0.301·11-s − 1.10·13-s − 0.267·14-s + 1/4·16-s + 0.242·17-s + 0.917·19-s − 0.447·20-s − 0.213·22-s + 1.66·23-s − 1/5·25-s − 0.784·26-s − 0.188·28-s − 1.48·29-s − 0.718·31-s + 0.176·32-s + 0.171·34-s + 0.338·35-s + 0.986·37-s + 0.648·38-s − 0.316·40-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23562 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23562 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23562\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(188.143\)
Root analytic conductor: \(13.7165\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 23562,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.72973243479295, −14.97730356528937, −14.67031339339609, −14.37738399731304, −13.22703464990632, −13.10863929540916, −12.61223362340329, −11.88920263900093, −11.39378870171897, −11.15098883801445, −10.27449617469442, −9.649761097090090, −9.239831421394749, −8.364866981827315, −7.601804193483846, −7.363094993935581, −6.851293224063010, −5.910526027307855, −5.337708473101999, −4.843092185869481, −4.075118171162095, −3.479869697779075, −2.894595748287047, −2.176810256746363, −1.032850323504756, 0, 1.032850323504756, 2.176810256746363, 2.894595748287047, 3.479869697779075, 4.075118171162095, 4.843092185869481, 5.337708473101999, 5.910526027307855, 6.851293224063010, 7.363094993935581, 7.601804193483846, 8.364866981827315, 9.239831421394749, 9.649761097090090, 10.27449617469442, 11.15098883801445, 11.39378870171897, 11.88920263900093, 12.61223362340329, 13.10863929540916, 13.22703464990632, 14.37738399731304, 14.67031339339609, 14.97730356528937, 15.72973243479295

Graph of the $Z$-function along the critical line