L(s) = 1 | − 2-s + 1.73i·3-s + 4-s + (1.5 + 2.59i)5-s − 1.73i·6-s + (0.5 + 0.866i)7-s − 8-s − 2.99·9-s + (−1.5 − 2.59i)10-s + 1.73i·12-s + (1 − 3.46i)13-s + (−0.5 − 0.866i)14-s + (−4.5 + 2.59i)15-s + 16-s + (−1.5 + 2.59i)17-s + 2.99·18-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.999i·3-s + 0.5·4-s + (0.670 + 1.16i)5-s − 0.707i·6-s + (0.188 + 0.327i)7-s − 0.353·8-s − 0.999·9-s + (−0.474 − 0.821i)10-s + 0.499i·12-s + (0.277 − 0.960i)13-s + (−0.133 − 0.231i)14-s + (−1.16 + 0.670i)15-s + 0.250·16-s + (−0.363 + 0.630i)17-s + 0.707·18-s + ⋯ |
Λ(s)=(=(234s/2ΓC(s)L(s)(−0.329−0.944i)Λ(2−s)
Λ(s)=(=(234s/2ΓC(s+1/2)L(s)(−0.329−0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
234
= 2⋅32⋅13
|
Sign: |
−0.329−0.944i
|
Analytic conductor: |
1.86849 |
Root analytic conductor: |
1.36693 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ234(133,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 234, ( :1/2), −0.329−0.944i)
|
Particular Values
L(1) |
≈ |
0.548745+0.773092i |
L(21) |
≈ |
0.548745+0.773092i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−1.73iT |
| 13 | 1+(−1+3.46i)T |
good | 5 | 1+(−1.5−2.59i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−0.5−0.866i)T+(−3.5+6.06i)T2 |
| 11 | 1+11T2 |
| 17 | 1+(1.5−2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−9.5−16.4i)T2 |
| 23 | 1+(4.5−7.79i)T+(−11.5−19.9i)T2 |
| 29 | 1−6T+29T2 |
| 31 | 1+(−0.5−0.866i)T+(−15.5+26.8i)T2 |
| 37 | 1+(2.5+4.33i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−4.5+7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.5−6.06i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.5+2.59i)T+(−23.5−40.7i)T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+12T+59T2 |
| 61 | 1+(−3.5−6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−0.5+0.866i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−7.5+12.9i)T+(−35.5−61.4i)T2 |
| 73 | 1−14T+73T2 |
| 79 | 1+(2.5−4.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+(1.5−2.59i)T+(−41.5−71.8i)T2 |
| 89 | 1+(7.5+12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−6.5−11.2i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.12212029561317654163808532450, −11.01558892482978496562343132860, −10.48812332318676872274100453231, −9.744585950465248339773846043718, −8.764545666429007937560486500874, −7.67226700054107553368356085374, −6.28518426902667916156014576709, −5.47432360237672440155261835779, −3.61633223728820169754740593841, −2.41514060346324109502670651818,
1.03069248005832328975211427130, 2.31399535242109755378314829303, 4.60937731851655237078049269949, 6.01183268293505075064948135086, 6.88796779699228937821140960342, 8.147201587092163436628687804771, 8.791046144755337286342646609256, 9.719519435748406270377439762616, 10.96907613427425333232802989245, 12.02776659183464191278861516197