Properties

Label 234.2.f.a.133.1
Level $234$
Weight $2$
Character 234.133
Analytic conductor $1.868$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [234,2,Mod(133,234)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("234.133"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(234, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 234 = 2 \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 234.f (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.86849940730\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 133.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 234.133
Dual form 234.2.f.a.139.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.73205i q^{3} +1.00000 q^{4} +(1.50000 + 2.59808i) q^{5} -1.73205i q^{6} +(0.500000 + 0.866025i) q^{7} -1.00000 q^{8} -3.00000 q^{9} +(-1.50000 - 2.59808i) q^{10} +1.73205i q^{12} +(1.00000 - 3.46410i) q^{13} +(-0.500000 - 0.866025i) q^{14} +(-4.50000 + 2.59808i) q^{15} +1.00000 q^{16} +(-1.50000 + 2.59808i) q^{17} +3.00000 q^{18} +(0.500000 - 0.866025i) q^{19} +(1.50000 + 2.59808i) q^{20} +(-1.50000 + 0.866025i) q^{21} +(-4.50000 + 7.79423i) q^{23} -1.73205i q^{24} +(-2.00000 + 3.46410i) q^{25} +(-1.00000 + 3.46410i) q^{26} -5.19615i q^{27} +(0.500000 + 0.866025i) q^{28} +6.00000 q^{29} +(4.50000 - 2.59808i) q^{30} +(0.500000 + 0.866025i) q^{31} -1.00000 q^{32} +(1.50000 - 2.59808i) q^{34} +(-1.50000 + 2.59808i) q^{35} -3.00000 q^{36} +(-2.50000 - 4.33013i) q^{37} +(-0.500000 + 0.866025i) q^{38} +(6.00000 + 1.73205i) q^{39} +(-1.50000 - 2.59808i) q^{40} +(4.50000 - 7.79423i) q^{41} +(1.50000 - 0.866025i) q^{42} +(3.50000 + 6.06218i) q^{43} +(-4.50000 - 7.79423i) q^{45} +(4.50000 - 7.79423i) q^{46} +(1.50000 - 2.59808i) q^{47} +1.73205i q^{48} +(3.00000 - 5.19615i) q^{49} +(2.00000 - 3.46410i) q^{50} +(-4.50000 - 2.59808i) q^{51} +(1.00000 - 3.46410i) q^{52} +6.00000 q^{53} +5.19615i q^{54} +(-0.500000 - 0.866025i) q^{56} +(1.50000 + 0.866025i) q^{57} -6.00000 q^{58} -12.0000 q^{59} +(-4.50000 + 2.59808i) q^{60} +(3.50000 + 6.06218i) q^{61} +(-0.500000 - 0.866025i) q^{62} +(-1.50000 - 2.59808i) q^{63} +1.00000 q^{64} +(10.5000 - 2.59808i) q^{65} +(0.500000 - 0.866025i) q^{67} +(-1.50000 + 2.59808i) q^{68} +(-13.5000 - 7.79423i) q^{69} +(1.50000 - 2.59808i) q^{70} +(7.50000 - 12.9904i) q^{71} +3.00000 q^{72} +14.0000 q^{73} +(2.50000 + 4.33013i) q^{74} +(-6.00000 - 3.46410i) q^{75} +(0.500000 - 0.866025i) q^{76} +(-6.00000 - 1.73205i) q^{78} +(-2.50000 + 4.33013i) q^{79} +(1.50000 + 2.59808i) q^{80} +9.00000 q^{81} +(-4.50000 + 7.79423i) q^{82} +(-1.50000 + 2.59808i) q^{83} +(-1.50000 + 0.866025i) q^{84} -9.00000 q^{85} +(-3.50000 - 6.06218i) q^{86} +10.3923i q^{87} +(-7.50000 - 12.9904i) q^{89} +(4.50000 + 7.79423i) q^{90} +(3.50000 - 0.866025i) q^{91} +(-4.50000 + 7.79423i) q^{92} +(-1.50000 + 0.866025i) q^{93} +(-1.50000 + 2.59808i) q^{94} +3.00000 q^{95} -1.73205i q^{96} +(6.50000 + 11.2583i) q^{97} +(-3.00000 + 5.19615i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} + 2 q^{4} + 3 q^{5} + q^{7} - 2 q^{8} - 6 q^{9} - 3 q^{10} + 2 q^{13} - q^{14} - 9 q^{15} + 2 q^{16} - 3 q^{17} + 6 q^{18} + q^{19} + 3 q^{20} - 3 q^{21} - 9 q^{23} - 4 q^{25} - 2 q^{26}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/234\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.73205i 1.00000i
\(4\) 1.00000 0.500000
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 1.73205i 0.707107i
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i 0.944911 0.327327i \(-0.106148\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) −1.00000 −0.353553
\(9\) −3.00000 −1.00000
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 1.00000 3.46410i 0.277350 0.960769i
\(14\) −0.500000 0.866025i −0.133631 0.231455i
\(15\) −4.50000 + 2.59808i −1.16190 + 0.670820i
\(16\) 1.00000 0.250000
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 3.00000 0.707107
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 1.50000 + 2.59808i 0.335410 + 0.580948i
\(21\) −1.50000 + 0.866025i −0.327327 + 0.188982i
\(22\) 0 0
\(23\) −4.50000 + 7.79423i −0.938315 + 1.62521i −0.169701 + 0.985496i \(0.554280\pi\)
−0.768613 + 0.639713i \(0.779053\pi\)
\(24\) 1.73205i 0.353553i
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) −1.00000 + 3.46410i −0.196116 + 0.679366i
\(27\) 5.19615i 1.00000i
\(28\) 0.500000 + 0.866025i 0.0944911 + 0.163663i
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 4.50000 2.59808i 0.821584 0.474342i
\(31\) 0.500000 + 0.866025i 0.0898027 + 0.155543i 0.907428 0.420208i \(-0.138043\pi\)
−0.817625 + 0.575751i \(0.804710\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.50000 2.59808i 0.257248 0.445566i
\(35\) −1.50000 + 2.59808i −0.253546 + 0.439155i
\(36\) −3.00000 −0.500000
\(37\) −2.50000 4.33013i −0.410997 0.711868i 0.584002 0.811752i \(-0.301486\pi\)
−0.994999 + 0.0998840i \(0.968153\pi\)
\(38\) −0.500000 + 0.866025i −0.0811107 + 0.140488i
\(39\) 6.00000 + 1.73205i 0.960769 + 0.277350i
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) 4.50000 7.79423i 0.702782 1.21725i −0.264704 0.964330i \(-0.585274\pi\)
0.967486 0.252924i \(-0.0813924\pi\)
\(42\) 1.50000 0.866025i 0.231455 0.133631i
\(43\) 3.50000 + 6.06218i 0.533745 + 0.924473i 0.999223 + 0.0394140i \(0.0125491\pi\)
−0.465478 + 0.885059i \(0.654118\pi\)
\(44\) 0 0
\(45\) −4.50000 7.79423i −0.670820 1.16190i
\(46\) 4.50000 7.79423i 0.663489 1.14920i
\(47\) 1.50000 2.59808i 0.218797 0.378968i −0.735643 0.677369i \(-0.763120\pi\)
0.954441 + 0.298401i \(0.0964533\pi\)
\(48\) 1.73205i 0.250000i
\(49\) 3.00000 5.19615i 0.428571 0.742307i
\(50\) 2.00000 3.46410i 0.282843 0.489898i
\(51\) −4.50000 2.59808i −0.630126 0.363803i
\(52\) 1.00000 3.46410i 0.138675 0.480384i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 5.19615i 0.707107i
\(55\) 0 0
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) 1.50000 + 0.866025i 0.198680 + 0.114708i
\(58\) −6.00000 −0.787839
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) −4.50000 + 2.59808i −0.580948 + 0.335410i
\(61\) 3.50000 + 6.06218i 0.448129 + 0.776182i 0.998264 0.0588933i \(-0.0187572\pi\)
−0.550135 + 0.835076i \(0.685424\pi\)
\(62\) −0.500000 0.866025i −0.0635001 0.109985i
\(63\) −1.50000 2.59808i −0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) 10.5000 2.59808i 1.30236 0.322252i
\(66\) 0 0
\(67\) 0.500000 0.866025i 0.0610847 0.105802i −0.833866 0.551967i \(-0.813877\pi\)
0.894951 + 0.446165i \(0.147211\pi\)
\(68\) −1.50000 + 2.59808i −0.181902 + 0.315063i
\(69\) −13.5000 7.79423i −1.62521 0.938315i
\(70\) 1.50000 2.59808i 0.179284 0.310530i
\(71\) 7.50000 12.9904i 0.890086 1.54167i 0.0503155 0.998733i \(-0.483977\pi\)
0.839771 0.542941i \(-0.182689\pi\)
\(72\) 3.00000 0.353553
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 2.50000 + 4.33013i 0.290619 + 0.503367i
\(75\) −6.00000 3.46410i −0.692820 0.400000i
\(76\) 0.500000 0.866025i 0.0573539 0.0993399i
\(77\) 0 0
\(78\) −6.00000 1.73205i −0.679366 0.196116i
\(79\) −2.50000 + 4.33013i −0.281272 + 0.487177i −0.971698 0.236225i \(-0.924090\pi\)
0.690426 + 0.723403i \(0.257423\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) 9.00000 1.00000
\(82\) −4.50000 + 7.79423i −0.496942 + 0.860729i
\(83\) −1.50000 + 2.59808i −0.164646 + 0.285176i −0.936530 0.350588i \(-0.885982\pi\)
0.771883 + 0.635764i \(0.219315\pi\)
\(84\) −1.50000 + 0.866025i −0.163663 + 0.0944911i
\(85\) −9.00000 −0.976187
\(86\) −3.50000 6.06218i −0.377415 0.653701i
\(87\) 10.3923i 1.11417i
\(88\) 0 0
\(89\) −7.50000 12.9904i −0.794998 1.37698i −0.922840 0.385183i \(-0.874138\pi\)
0.127842 0.991795i \(-0.459195\pi\)
\(90\) 4.50000 + 7.79423i 0.474342 + 0.821584i
\(91\) 3.50000 0.866025i 0.366900 0.0907841i
\(92\) −4.50000 + 7.79423i −0.469157 + 0.812605i
\(93\) −1.50000 + 0.866025i −0.155543 + 0.0898027i
\(94\) −1.50000 + 2.59808i −0.154713 + 0.267971i
\(95\) 3.00000 0.307794
\(96\) 1.73205i 0.176777i
\(97\) 6.50000 + 11.2583i 0.659975 + 1.14311i 0.980622 + 0.195911i \(0.0627665\pi\)
−0.320647 + 0.947199i \(0.603900\pi\)
\(98\) −3.00000 + 5.19615i −0.303046 + 0.524891i
\(99\) 0 0
\(100\) −2.00000 + 3.46410i −0.200000 + 0.346410i
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 4.50000 + 2.59808i 0.445566 + 0.257248i
\(103\) 6.50000 + 11.2583i 0.640464 + 1.10932i 0.985329 + 0.170664i \(0.0545913\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) −1.00000 + 3.46410i −0.0980581 + 0.339683i
\(105\) −4.50000 2.59808i −0.439155 0.253546i
\(106\) −6.00000 −0.582772
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 5.19615i 0.500000i
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 7.50000 4.33013i 0.711868 0.410997i
\(112\) 0.500000 + 0.866025i 0.0472456 + 0.0818317i
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) −1.50000 0.866025i −0.140488 0.0811107i
\(115\) −27.0000 −2.51776
\(116\) 6.00000 0.557086
\(117\) −3.00000 + 10.3923i −0.277350 + 0.960769i
\(118\) 12.0000 1.10469
\(119\) −3.00000 −0.275010
\(120\) 4.50000 2.59808i 0.410792 0.237171i
\(121\) −11.0000 −1.00000
\(122\) −3.50000 6.06218i −0.316875 0.548844i
\(123\) 13.5000 + 7.79423i 1.21725 + 0.702782i
\(124\) 0.500000 + 0.866025i 0.0449013 + 0.0777714i
\(125\) 3.00000 0.268328
\(126\) 1.50000 + 2.59808i 0.133631 + 0.231455i
\(127\) −5.50000 9.52628i −0.488046 0.845321i 0.511859 0.859069i \(-0.328957\pi\)
−0.999905 + 0.0137486i \(0.995624\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −10.5000 + 6.06218i −0.924473 + 0.533745i
\(130\) −10.5000 + 2.59808i −0.920911 + 0.227866i
\(131\) 7.50000 + 12.9904i 0.655278 + 1.13497i 0.981824 + 0.189794i \(0.0607819\pi\)
−0.326546 + 0.945181i \(0.605885\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) −0.500000 + 0.866025i −0.0431934 + 0.0748132i
\(135\) 13.5000 7.79423i 1.16190 0.670820i
\(136\) 1.50000 2.59808i 0.128624 0.222783i
\(137\) −1.50000 2.59808i −0.128154 0.221969i 0.794808 0.606861i \(-0.207572\pi\)
−0.922961 + 0.384893i \(0.874238\pi\)
\(138\) 13.5000 + 7.79423i 1.14920 + 0.663489i
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) −1.50000 + 2.59808i −0.126773 + 0.219578i
\(141\) 4.50000 + 2.59808i 0.378968 + 0.218797i
\(142\) −7.50000 + 12.9904i −0.629386 + 1.09013i
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) 9.00000 + 15.5885i 0.747409 + 1.29455i
\(146\) −14.0000 −1.15865
\(147\) 9.00000 + 5.19615i 0.742307 + 0.428571i
\(148\) −2.50000 4.33013i −0.205499 0.355934i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 6.00000 + 3.46410i 0.489898 + 0.282843i
\(151\) 9.50000 16.4545i 0.773099 1.33905i −0.162758 0.986666i \(-0.552039\pi\)
0.935857 0.352381i \(-0.114628\pi\)
\(152\) −0.500000 + 0.866025i −0.0405554 + 0.0702439i
\(153\) 4.50000 7.79423i 0.363803 0.630126i
\(154\) 0 0
\(155\) −1.50000 + 2.59808i −0.120483 + 0.208683i
\(156\) 6.00000 + 1.73205i 0.480384 + 0.138675i
\(157\) −8.50000 14.7224i −0.678374 1.17498i −0.975470 0.220131i \(-0.929352\pi\)
0.297097 0.954847i \(-0.403982\pi\)
\(158\) 2.50000 4.33013i 0.198889 0.344486i
\(159\) 10.3923i 0.824163i
\(160\) −1.50000 2.59808i −0.118585 0.205396i
\(161\) −9.00000 −0.709299
\(162\) −9.00000 −0.707107
\(163\) −5.50000 + 9.52628i −0.430793 + 0.746156i −0.996942 0.0781474i \(-0.975100\pi\)
0.566149 + 0.824303i \(0.308433\pi\)
\(164\) 4.50000 7.79423i 0.351391 0.608627i
\(165\) 0 0
\(166\) 1.50000 2.59808i 0.116423 0.201650i
\(167\) −4.50000 + 7.79423i −0.348220 + 0.603136i −0.985933 0.167139i \(-0.946547\pi\)
0.637713 + 0.770274i \(0.279881\pi\)
\(168\) 1.50000 0.866025i 0.115728 0.0668153i
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 9.00000 0.690268
\(171\) −1.50000 + 2.59808i −0.114708 + 0.198680i
\(172\) 3.50000 + 6.06218i 0.266872 + 0.462237i
\(173\) −10.5000 18.1865i −0.798300 1.38270i −0.920722 0.390218i \(-0.872399\pi\)
0.122422 0.992478i \(-0.460934\pi\)
\(174\) 10.3923i 0.787839i
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 20.7846i 1.56227i
\(178\) 7.50000 + 12.9904i 0.562149 + 0.973670i
\(179\) −4.50000 7.79423i −0.336346 0.582568i 0.647397 0.762153i \(-0.275858\pi\)
−0.983742 + 0.179585i \(0.942524\pi\)
\(180\) −4.50000 7.79423i −0.335410 0.580948i
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) −3.50000 + 0.866025i −0.259437 + 0.0641941i
\(183\) −10.5000 + 6.06218i −0.776182 + 0.448129i
\(184\) 4.50000 7.79423i 0.331744 0.574598i
\(185\) 7.50000 12.9904i 0.551411 0.955072i
\(186\) 1.50000 0.866025i 0.109985 0.0635001i
\(187\) 0 0
\(188\) 1.50000 2.59808i 0.109399 0.189484i
\(189\) 4.50000 2.59808i 0.327327 0.188982i
\(190\) −3.00000 −0.217643
\(191\) −1.50000 2.59808i −0.108536 0.187990i 0.806641 0.591041i \(-0.201283\pi\)
−0.915177 + 0.403051i \(0.867950\pi\)
\(192\) 1.73205i 0.125000i
\(193\) −11.5000 + 19.9186i −0.827788 + 1.43377i 0.0719816 + 0.997406i \(0.477068\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) −6.50000 11.2583i −0.466673 0.808301i
\(195\) 4.50000 + 18.1865i 0.322252 + 1.30236i
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) −10.5000 18.1865i −0.748094 1.29574i −0.948735 0.316072i \(-0.897636\pi\)
0.200641 0.979665i \(-0.435697\pi\)
\(198\) 0 0
\(199\) 9.50000 16.4545i 0.673437 1.16643i −0.303486 0.952836i \(-0.598151\pi\)
0.976923 0.213591i \(-0.0685161\pi\)
\(200\) 2.00000 3.46410i 0.141421 0.244949i
\(201\) 1.50000 + 0.866025i 0.105802 + 0.0610847i
\(202\) 6.00000 0.422159
\(203\) 3.00000 + 5.19615i 0.210559 + 0.364698i
\(204\) −4.50000 2.59808i −0.315063 0.181902i
\(205\) 27.0000 1.88576
\(206\) −6.50000 11.2583i −0.452876 0.784405i
\(207\) 13.5000 23.3827i 0.938315 1.62521i
\(208\) 1.00000 3.46410i 0.0693375 0.240192i
\(209\) 0 0
\(210\) 4.50000 + 2.59808i 0.310530 + 0.179284i
\(211\) 6.50000 11.2583i 0.447478 0.775055i −0.550743 0.834675i \(-0.685655\pi\)
0.998221 + 0.0596196i \(0.0189888\pi\)
\(212\) 6.00000 0.412082
\(213\) 22.5000 + 12.9904i 1.54167 + 0.890086i
\(214\) −1.50000 2.59808i −0.102538 0.177601i
\(215\) −10.5000 + 18.1865i −0.716094 + 1.24031i
\(216\) 5.19615i 0.353553i
\(217\) −0.500000 + 0.866025i −0.0339422 + 0.0587896i
\(218\) −2.00000 −0.135457
\(219\) 24.2487i 1.63858i
\(220\) 0 0
\(221\) 7.50000 + 7.79423i 0.504505 + 0.524297i
\(222\) −7.50000 + 4.33013i −0.503367 + 0.290619i
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) −0.500000 0.866025i −0.0334077 0.0578638i
\(225\) 6.00000 10.3923i 0.400000 0.692820i
\(226\) −6.00000 −0.399114
\(227\) −4.50000 7.79423i −0.298675 0.517321i 0.677158 0.735838i \(-0.263211\pi\)
−0.975833 + 0.218517i \(0.929878\pi\)
\(228\) 1.50000 + 0.866025i 0.0993399 + 0.0573539i
\(229\) −2.50000 4.33013i −0.165205 0.286143i 0.771523 0.636201i \(-0.219495\pi\)
−0.936728 + 0.350058i \(0.886162\pi\)
\(230\) 27.0000 1.78033
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 3.00000 10.3923i 0.196116 0.679366i
\(235\) 9.00000 0.587095
\(236\) −12.0000 −0.781133
\(237\) −7.50000 4.33013i −0.487177 0.281272i
\(238\) 3.00000 0.194461
\(239\) −7.50000 12.9904i −0.485135 0.840278i 0.514719 0.857359i \(-0.327896\pi\)
−0.999854 + 0.0170808i \(0.994563\pi\)
\(240\) −4.50000 + 2.59808i −0.290474 + 0.167705i
\(241\) 12.5000 + 21.6506i 0.805196 + 1.39464i 0.916159 + 0.400815i \(0.131273\pi\)
−0.110963 + 0.993825i \(0.535394\pi\)
\(242\) 11.0000 0.707107
\(243\) 15.5885i 1.00000i
\(244\) 3.50000 + 6.06218i 0.224065 + 0.388091i
\(245\) 18.0000 1.14998
\(246\) −13.5000 7.79423i −0.860729 0.496942i
\(247\) −2.50000 2.59808i −0.159071 0.165312i
\(248\) −0.500000 0.866025i −0.0317500 0.0549927i
\(249\) −4.50000 2.59808i −0.285176 0.164646i
\(250\) −3.00000 −0.189737
\(251\) −13.5000 + 23.3827i −0.852112 + 1.47590i 0.0271858 + 0.999630i \(0.491345\pi\)
−0.879298 + 0.476272i \(0.841988\pi\)
\(252\) −1.50000 2.59808i −0.0944911 0.163663i
\(253\) 0 0
\(254\) 5.50000 + 9.52628i 0.345101 + 0.597732i
\(255\) 15.5885i 0.976187i
\(256\) 1.00000 0.0625000
\(257\) −7.50000 + 12.9904i −0.467837 + 0.810318i −0.999325 0.0367485i \(-0.988300\pi\)
0.531487 + 0.847066i \(0.321633\pi\)
\(258\) 10.5000 6.06218i 0.653701 0.377415i
\(259\) 2.50000 4.33013i 0.155342 0.269061i
\(260\) 10.5000 2.59808i 0.651182 0.161126i
\(261\) −18.0000 −1.11417
\(262\) −7.50000 12.9904i −0.463352 0.802548i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 9.00000 + 15.5885i 0.552866 + 0.957591i
\(266\) −1.00000 −0.0613139
\(267\) 22.5000 12.9904i 1.37698 0.794998i
\(268\) 0.500000 0.866025i 0.0305424 0.0529009i
\(269\) −10.5000 + 18.1865i −0.640196 + 1.10885i 0.345192 + 0.938532i \(0.387814\pi\)
−0.985389 + 0.170321i \(0.945520\pi\)
\(270\) −13.5000 + 7.79423i −0.821584 + 0.474342i
\(271\) −5.50000 9.52628i −0.334101 0.578680i 0.649211 0.760609i \(-0.275099\pi\)
−0.983312 + 0.181928i \(0.941766\pi\)
\(272\) −1.50000 + 2.59808i −0.0909509 + 0.157532i
\(273\) 1.50000 + 6.06218i 0.0907841 + 0.366900i
\(274\) 1.50000 + 2.59808i 0.0906183 + 0.156956i
\(275\) 0 0
\(276\) −13.5000 7.79423i −0.812605 0.469157i
\(277\) −8.50000 14.7224i −0.510716 0.884585i −0.999923 0.0124177i \(-0.996047\pi\)
0.489207 0.872167i \(-0.337286\pi\)
\(278\) 4.00000 0.239904
\(279\) −1.50000 2.59808i −0.0898027 0.155543i
\(280\) 1.50000 2.59808i 0.0896421 0.155265i
\(281\) −1.50000 + 2.59808i −0.0894825 + 0.154988i −0.907293 0.420500i \(-0.861855\pi\)
0.817810 + 0.575488i \(0.195188\pi\)
\(282\) −4.50000 2.59808i −0.267971 0.154713i
\(283\) 0.500000 0.866025i 0.0297219 0.0514799i −0.850782 0.525519i \(-0.823871\pi\)
0.880504 + 0.474039i \(0.157204\pi\)
\(284\) 7.50000 12.9904i 0.445043 0.770837i
\(285\) 5.19615i 0.307794i
\(286\) 0 0
\(287\) 9.00000 0.531253
\(288\) 3.00000 0.176777
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) −9.00000 15.5885i −0.528498 0.915386i
\(291\) −19.5000 + 11.2583i −1.14311 + 0.659975i
\(292\) 14.0000 0.819288
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) −9.00000 5.19615i −0.524891 0.303046i
\(295\) −18.0000 31.1769i −1.04800 1.81519i
\(296\) 2.50000 + 4.33013i 0.145310 + 0.251684i
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 22.5000 + 23.3827i 1.30121 + 1.35226i
\(300\) −6.00000 3.46410i −0.346410 0.200000i
\(301\) −3.50000 + 6.06218i −0.201737 + 0.349418i
\(302\) −9.50000 + 16.4545i −0.546664 + 0.946849i
\(303\) 10.3923i 0.597022i
\(304\) 0.500000 0.866025i 0.0286770 0.0496700i
\(305\) −10.5000 + 18.1865i −0.601228 + 1.04136i
\(306\) −4.50000 + 7.79423i −0.257248 + 0.445566i
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) −19.5000 + 11.2583i −1.10932 + 0.640464i
\(310\) 1.50000 2.59808i 0.0851943 0.147561i
\(311\) −13.5000 23.3827i −0.765515 1.32591i −0.939974 0.341246i \(-0.889151\pi\)
0.174459 0.984664i \(-0.444182\pi\)
\(312\) −6.00000 1.73205i −0.339683 0.0980581i
\(313\) 0.500000 0.866025i 0.0282617 0.0489506i −0.851549 0.524276i \(-0.824336\pi\)
0.879810 + 0.475325i \(0.157669\pi\)
\(314\) 8.50000 + 14.7224i 0.479683 + 0.830835i
\(315\) 4.50000 7.79423i 0.253546 0.439155i
\(316\) −2.50000 + 4.33013i −0.140636 + 0.243589i
\(317\) −4.50000 + 7.79423i −0.252745 + 0.437767i −0.964281 0.264883i \(-0.914667\pi\)
0.711535 + 0.702650i \(0.248000\pi\)
\(318\) 10.3923i 0.582772i
\(319\) 0 0
\(320\) 1.50000 + 2.59808i 0.0838525 + 0.145237i
\(321\) −4.50000 + 2.59808i −0.251166 + 0.145010i
\(322\) 9.00000 0.501550
\(323\) 1.50000 + 2.59808i 0.0834622 + 0.144561i
\(324\) 9.00000 0.500000
\(325\) 10.0000 + 10.3923i 0.554700 + 0.576461i
\(326\) 5.50000 9.52628i 0.304617 0.527612i
\(327\) 3.46410i 0.191565i
\(328\) −4.50000 + 7.79423i −0.248471 + 0.430364i
\(329\) 3.00000 0.165395
\(330\) 0 0
\(331\) −2.50000 4.33013i −0.137412 0.238005i 0.789104 0.614260i \(-0.210545\pi\)
−0.926516 + 0.376254i \(0.877212\pi\)
\(332\) −1.50000 + 2.59808i −0.0823232 + 0.142588i
\(333\) 7.50000 + 12.9904i 0.410997 + 0.711868i
\(334\) 4.50000 7.79423i 0.246229 0.426481i
\(335\) 3.00000 0.163908
\(336\) −1.50000 + 0.866025i −0.0818317 + 0.0472456i
\(337\) 6.50000 + 11.2583i 0.354078 + 0.613280i 0.986960 0.160968i \(-0.0514616\pi\)
−0.632882 + 0.774248i \(0.718128\pi\)
\(338\) 11.0000 + 6.92820i 0.598321 + 0.376845i
\(339\) 10.3923i 0.564433i
\(340\) −9.00000 −0.488094
\(341\) 0 0
\(342\) 1.50000 2.59808i 0.0811107 0.140488i
\(343\) 13.0000 0.701934
\(344\) −3.50000 6.06218i −0.188707 0.326851i
\(345\) 46.7654i 2.51776i
\(346\) 10.5000 + 18.1865i 0.564483 + 0.977714i
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 10.3923i 0.557086i
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 4.00000 0.213809
\(351\) −18.0000 5.19615i −0.960769 0.277350i
\(352\) 0 0
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 20.7846i 1.10469i
\(355\) 45.0000 2.38835
\(356\) −7.50000 12.9904i −0.397499 0.688489i
\(357\) 5.19615i 0.275010i
\(358\) 4.50000 + 7.79423i 0.237832 + 0.411938i
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 4.50000 + 7.79423i 0.237171 + 0.410792i
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 22.0000 1.15629
\(363\) 19.0526i 1.00000i
\(364\) 3.50000 0.866025i 0.183450 0.0453921i
\(365\) 21.0000 + 36.3731i 1.09919 + 1.90385i
\(366\) 10.5000 6.06218i 0.548844 0.316875i
\(367\) −16.0000 −0.835193 −0.417597 0.908633i \(-0.637127\pi\)
−0.417597 + 0.908633i \(0.637127\pi\)
\(368\) −4.50000 + 7.79423i −0.234579 + 0.406302i
\(369\) −13.5000 + 23.3827i −0.702782 + 1.21725i
\(370\) −7.50000 + 12.9904i −0.389906 + 0.675338i
\(371\) 3.00000 + 5.19615i 0.155752 + 0.269771i
\(372\) −1.50000 + 0.866025i −0.0777714 + 0.0449013i
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 5.19615i 0.268328i
\(376\) −1.50000 + 2.59808i −0.0773566 + 0.133986i
\(377\) 6.00000 20.7846i 0.309016 1.07046i
\(378\) −4.50000 + 2.59808i −0.231455 + 0.133631i
\(379\) −14.5000 25.1147i −0.744815 1.29006i −0.950281 0.311393i \(-0.899204\pi\)
0.205466 0.978664i \(-0.434129\pi\)
\(380\) 3.00000 0.153897
\(381\) 16.5000 9.52628i 0.845321 0.488046i
\(382\) 1.50000 + 2.59808i 0.0767467 + 0.132929i
\(383\) −36.0000 −1.83951 −0.919757 0.392488i \(-0.871614\pi\)
−0.919757 + 0.392488i \(0.871614\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) 0 0
\(386\) 11.5000 19.9186i 0.585335 1.01383i
\(387\) −10.5000 18.1865i −0.533745 0.924473i
\(388\) 6.50000 + 11.2583i 0.329988 + 0.571555i
\(389\) −4.50000 + 7.79423i −0.228159 + 0.395183i −0.957263 0.289220i \(-0.906604\pi\)
0.729103 + 0.684403i \(0.239937\pi\)
\(390\) −4.50000 18.1865i −0.227866 0.920911i
\(391\) −13.5000 23.3827i −0.682724 1.18251i
\(392\) −3.00000 + 5.19615i −0.151523 + 0.262445i
\(393\) −22.5000 + 12.9904i −1.13497 + 0.655278i
\(394\) 10.5000 + 18.1865i 0.528982 + 0.916224i
\(395\) −15.0000 −0.754732
\(396\) 0 0
\(397\) 3.50000 6.06218i 0.175660 0.304252i −0.764730 0.644351i \(-0.777127\pi\)
0.940389 + 0.340099i \(0.110461\pi\)
\(398\) −9.50000 + 16.4545i −0.476192 + 0.824789i
\(399\) 1.73205i 0.0867110i
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) 4.50000 7.79423i 0.224719 0.389225i −0.731516 0.681824i \(-0.761187\pi\)
0.956235 + 0.292599i \(0.0945202\pi\)
\(402\) −1.50000 0.866025i −0.0748132 0.0431934i
\(403\) 3.50000 0.866025i 0.174347 0.0431398i
\(404\) −6.00000 −0.298511
\(405\) 13.5000 + 23.3827i 0.670820 + 1.16190i
\(406\) −3.00000 5.19615i −0.148888 0.257881i
\(407\) 0 0
\(408\) 4.50000 + 2.59808i 0.222783 + 0.128624i
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) −27.0000 −1.33343
\(411\) 4.50000 2.59808i 0.221969 0.128154i
\(412\) 6.50000 + 11.2583i 0.320232 + 0.554658i
\(413\) −6.00000 10.3923i −0.295241 0.511372i
\(414\) −13.5000 + 23.3827i −0.663489 + 1.14920i
\(415\) −9.00000 −0.441793
\(416\) −1.00000 + 3.46410i −0.0490290 + 0.169842i
\(417\) 6.92820i 0.339276i
\(418\) 0 0
\(419\) 10.5000 18.1865i 0.512959 0.888470i −0.486928 0.873442i \(-0.661883\pi\)
0.999887 0.0150285i \(-0.00478389\pi\)
\(420\) −4.50000 2.59808i −0.219578 0.126773i
\(421\) 9.50000 16.4545i 0.463002 0.801942i −0.536107 0.844150i \(-0.680106\pi\)
0.999109 + 0.0422075i \(0.0134391\pi\)
\(422\) −6.50000 + 11.2583i −0.316415 + 0.548047i
\(423\) −4.50000 + 7.79423i −0.218797 + 0.378968i
\(424\) −6.00000 −0.291386
\(425\) −6.00000 10.3923i −0.291043 0.504101i
\(426\) −22.5000 12.9904i −1.09013 0.629386i
\(427\) −3.50000 + 6.06218i −0.169377 + 0.293369i
\(428\) 1.50000 + 2.59808i 0.0725052 + 0.125583i
\(429\) 0 0
\(430\) 10.5000 18.1865i 0.506355 0.877033i
\(431\) 4.50000 + 7.79423i 0.216757 + 0.375435i 0.953815 0.300395i \(-0.0971186\pi\)
−0.737057 + 0.675830i \(0.763785\pi\)
\(432\) 5.19615i 0.250000i
\(433\) −5.50000 + 9.52628i −0.264313 + 0.457804i −0.967383 0.253317i \(-0.918479\pi\)
0.703070 + 0.711120i \(0.251812\pi\)
\(434\) 0.500000 0.866025i 0.0240008 0.0415705i
\(435\) −27.0000 + 15.5885i −1.29455 + 0.747409i
\(436\) 2.00000 0.0957826
\(437\) 4.50000 + 7.79423i 0.215264 + 0.372849i
\(438\) 24.2487i 1.15865i
\(439\) 32.0000 1.52728 0.763638 0.645644i \(-0.223411\pi\)
0.763638 + 0.645644i \(0.223411\pi\)
\(440\) 0 0
\(441\) −9.00000 + 15.5885i −0.428571 + 0.742307i
\(442\) −7.50000 7.79423i −0.356739 0.370734i
\(443\) 4.50000 7.79423i 0.213801 0.370315i −0.739100 0.673596i \(-0.764749\pi\)
0.952901 + 0.303281i \(0.0980821\pi\)
\(444\) 7.50000 4.33013i 0.355934 0.205499i
\(445\) 22.5000 38.9711i 1.06660 1.84741i
\(446\) −8.00000 −0.378811
\(447\) 10.3923i 0.491539i
\(448\) 0.500000 + 0.866025i 0.0236228 + 0.0409159i
\(449\) 4.50000 7.79423i 0.212368 0.367832i −0.740087 0.672511i \(-0.765216\pi\)
0.952455 + 0.304679i \(0.0985491\pi\)
\(450\) −6.00000 + 10.3923i −0.282843 + 0.489898i
\(451\) 0 0
\(452\) 6.00000 0.282216
\(453\) 28.5000 + 16.4545i 1.33905 + 0.773099i
\(454\) 4.50000 + 7.79423i 0.211195 + 0.365801i
\(455\) 7.50000 + 7.79423i 0.351605 + 0.365399i
\(456\) −1.50000 0.866025i −0.0702439 0.0405554i
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 2.50000 + 4.33013i 0.116817 + 0.202334i
\(459\) 13.5000 + 7.79423i 0.630126 + 0.363803i
\(460\) −27.0000 −1.25888
\(461\) 13.5000 + 23.3827i 0.628758 + 1.08904i 0.987801 + 0.155719i \(0.0497696\pi\)
−0.359044 + 0.933321i \(0.616897\pi\)
\(462\) 0 0
\(463\) −5.50000 9.52628i −0.255607 0.442724i 0.709453 0.704752i \(-0.248942\pi\)
−0.965060 + 0.262029i \(0.915609\pi\)
\(464\) 6.00000 0.278543
\(465\) −4.50000 2.59808i −0.208683 0.120483i
\(466\) −6.00000 −0.277945
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) −3.00000 + 10.3923i −0.138675 + 0.480384i
\(469\) 1.00000 0.0461757
\(470\) −9.00000 −0.415139
\(471\) 25.5000 14.7224i 1.17498 0.678374i
\(472\) 12.0000 0.552345
\(473\) 0 0
\(474\) 7.50000 + 4.33013i 0.344486 + 0.198889i
\(475\) 2.00000 + 3.46410i 0.0917663 + 0.158944i
\(476\) −3.00000 −0.137505
\(477\) −18.0000 −0.824163
\(478\) 7.50000 + 12.9904i 0.343042 + 0.594166i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 4.50000 2.59808i 0.205396 0.118585i
\(481\) −17.5000 + 4.33013i −0.797931 + 0.197437i
\(482\) −12.5000 21.6506i −0.569359 0.986159i
\(483\) 15.5885i 0.709299i
\(484\) −11.0000 −0.500000
\(485\) −19.5000 + 33.7750i −0.885449 + 1.53364i
\(486\) 15.5885i 0.707107i
\(487\) 9.50000 16.4545i 0.430486 0.745624i −0.566429 0.824110i \(-0.691675\pi\)
0.996915 + 0.0784867i \(0.0250088\pi\)
\(488\) −3.50000 6.06218i −0.158438 0.274422i
\(489\) −16.5000 9.52628i −0.746156 0.430793i
\(490\) −18.0000 −0.813157
\(491\) −7.50000 + 12.9904i −0.338470 + 0.586248i −0.984145 0.177365i \(-0.943243\pi\)
0.645675 + 0.763612i \(0.276576\pi\)
\(492\) 13.5000 + 7.79423i 0.608627 + 0.351391i
\(493\) −9.00000 + 15.5885i −0.405340 + 0.702069i
\(494\) 2.50000 + 2.59808i 0.112480 + 0.116893i
\(495\) 0 0
\(496\) 0.500000 + 0.866025i 0.0224507 + 0.0388857i
\(497\) 15.0000 0.672842
\(498\) 4.50000 + 2.59808i 0.201650 + 0.116423i
\(499\) −2.50000 4.33013i −0.111915 0.193843i 0.804627 0.593780i \(-0.202365\pi\)
−0.916542 + 0.399937i \(0.869032\pi\)
\(500\) 3.00000 0.134164
\(501\) −13.5000 7.79423i −0.603136 0.348220i
\(502\) 13.5000 23.3827i 0.602534 1.04362i
\(503\) 19.5000 33.7750i 0.869462 1.50595i 0.00691465 0.999976i \(-0.497799\pi\)
0.862547 0.505976i \(-0.168868\pi\)
\(504\) 1.50000 + 2.59808i 0.0668153 + 0.115728i
\(505\) −9.00000 15.5885i −0.400495 0.693677i
\(506\) 0 0
\(507\) 12.0000 19.0526i 0.532939 0.846154i
\(508\) −5.50000 9.52628i −0.244023 0.422660i
\(509\) 19.5000 33.7750i 0.864322 1.49705i −0.00339621 0.999994i \(-0.501081\pi\)
0.867719 0.497056i \(-0.165586\pi\)
\(510\) 15.5885i 0.690268i
\(511\) 7.00000 + 12.1244i 0.309662 + 0.536350i
\(512\) −1.00000 −0.0441942
\(513\) −4.50000 2.59808i −0.198680 0.114708i
\(514\) 7.50000 12.9904i 0.330811 0.572981i
\(515\) −19.5000 + 33.7750i −0.859273 + 1.48830i
\(516\) −10.5000 + 6.06218i −0.462237 + 0.266872i
\(517\) 0 0
\(518\) −2.50000 + 4.33013i −0.109844 + 0.190255i
\(519\) 31.5000 18.1865i 1.38270 0.798300i
\(520\) −10.5000 + 2.59808i −0.460455 + 0.113933i
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 18.0000 0.787839
\(523\) 21.5000 + 37.2391i 0.940129 + 1.62835i 0.765222 + 0.643767i \(0.222629\pi\)
0.174908 + 0.984585i \(0.444037\pi\)
\(524\) 7.50000 + 12.9904i 0.327639 + 0.567487i
\(525\) 6.92820i 0.302372i
\(526\) 0 0
\(527\) −3.00000 −0.130682
\(528\) 0 0
\(529\) −29.0000 50.2295i −1.26087 2.18389i
\(530\) −9.00000 15.5885i −0.390935 0.677119i
\(531\) 36.0000 1.56227
\(532\) 1.00000 0.0433555
\(533\) −22.5000 23.3827i −0.974583 1.01282i
\(534\) −22.5000 + 12.9904i −0.973670 + 0.562149i
\(535\) −4.50000 + 7.79423i −0.194552 + 0.336974i
\(536\) −0.500000 + 0.866025i −0.0215967 + 0.0374066i
\(537\) 13.5000 7.79423i 0.582568 0.336346i
\(538\) 10.5000 18.1865i 0.452687 0.784077i
\(539\) 0 0
\(540\) 13.5000 7.79423i 0.580948 0.335410i
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 5.50000 + 9.52628i 0.236245 + 0.409189i
\(543\) 38.1051i 1.63525i
\(544\) 1.50000 2.59808i 0.0643120 0.111392i
\(545\) 3.00000 + 5.19615i 0.128506 + 0.222579i
\(546\) −1.50000 6.06218i −0.0641941 0.259437i
\(547\) 12.5000 21.6506i 0.534461 0.925714i −0.464728 0.885454i \(-0.653848\pi\)
0.999189 0.0402607i \(-0.0128188\pi\)
\(548\) −1.50000 2.59808i −0.0640768 0.110984i
\(549\) −10.5000 18.1865i −0.448129 0.776182i
\(550\) 0 0
\(551\) 3.00000 5.19615i 0.127804 0.221364i
\(552\) 13.5000 + 7.79423i 0.574598 + 0.331744i
\(553\) −5.00000 −0.212622
\(554\) 8.50000 + 14.7224i 0.361130 + 0.625496i
\(555\) 22.5000 + 12.9904i 0.955072 + 0.551411i
\(556\) −4.00000 −0.169638
\(557\) −4.50000 7.79423i −0.190671 0.330252i 0.754802 0.655953i \(-0.227733\pi\)
−0.945473 + 0.325701i \(0.894400\pi\)
\(558\) 1.50000 + 2.59808i 0.0635001 + 0.109985i
\(559\) 24.5000 6.06218i 1.03624 0.256403i
\(560\) −1.50000 + 2.59808i −0.0633866 + 0.109789i
\(561\) 0 0
\(562\) 1.50000 2.59808i 0.0632737 0.109593i
\(563\) −36.0000 −1.51722 −0.758610 0.651546i \(-0.774121\pi\)
−0.758610 + 0.651546i \(0.774121\pi\)
\(564\) 4.50000 + 2.59808i 0.189484 + 0.109399i
\(565\) 9.00000 + 15.5885i 0.378633 + 0.655811i
\(566\) −0.500000 + 0.866025i −0.0210166 + 0.0364018i
\(567\) 4.50000 + 7.79423i 0.188982 + 0.327327i
\(568\) −7.50000 + 12.9904i −0.314693 + 0.545064i
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 5.19615i 0.217643i
\(571\) 9.50000 + 16.4545i 0.397563 + 0.688599i 0.993425 0.114488i \(-0.0365228\pi\)
−0.595862 + 0.803087i \(0.703189\pi\)
\(572\) 0 0
\(573\) 4.50000 2.59808i 0.187990 0.108536i
\(574\) −9.00000 −0.375653
\(575\) −18.0000 31.1769i −0.750652 1.30017i
\(576\) −3.00000 −0.125000
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) −34.5000 19.9186i −1.43377 0.827788i
\(580\) 9.00000 + 15.5885i 0.373705 + 0.647275i
\(581\) −3.00000 −0.124461
\(582\) 19.5000 11.2583i 0.808301 0.466673i
\(583\) 0 0
\(584\) −14.0000 −0.579324
\(585\) −31.5000 + 7.79423i −1.30236 + 0.322252i
\(586\) 6.00000 0.247858
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 9.00000 + 5.19615i 0.371154 + 0.214286i
\(589\) 1.00000 0.0412043
\(590\) 18.0000 + 31.1769i 0.741048 + 1.28353i
\(591\) 31.5000 18.1865i 1.29574 0.748094i
\(592\) −2.50000 4.33013i −0.102749 0.177967i
\(593\) 6.00000 0.246390 0.123195 0.992382i \(-0.460686\pi\)
0.123195 + 0.992382i \(0.460686\pi\)
\(594\) 0 0
\(595\) −4.50000 7.79423i −0.184482 0.319532i
\(596\) 6.00000 0.245770
\(597\) 28.5000 + 16.4545i 1.16643 + 0.673437i
\(598\) −22.5000 23.3827i −0.920093 0.956189i
\(599\) 16.5000 + 28.5788i 0.674172 + 1.16770i 0.976710 + 0.214563i \(0.0688326\pi\)
−0.302539 + 0.953137i \(0.597834\pi\)
\(600\) 6.00000 + 3.46410i 0.244949 + 0.141421i
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 3.50000 6.06218i 0.142649 0.247076i
\(603\) −1.50000 + 2.59808i −0.0610847 + 0.105802i
\(604\) 9.50000 16.4545i 0.386550 0.669523i
\(605\) −16.5000 28.5788i −0.670820 1.16190i
\(606\) 10.3923i 0.422159i
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) −0.500000 + 0.866025i −0.0202777 + 0.0351220i
\(609\) −9.00000 + 5.19615i −0.364698 + 0.210559i
\(610\) 10.5000 18.1865i 0.425133 0.736351i
\(611\) −7.50000 7.79423i −0.303418 0.315321i
\(612\) 4.50000 7.79423i 0.181902 0.315063i
\(613\) 15.5000 + 26.8468i 0.626039 + 1.08433i 0.988339 + 0.152270i \(0.0486583\pi\)
−0.362300 + 0.932062i \(0.618008\pi\)
\(614\) 28.0000 1.12999
\(615\) 46.7654i 1.88576i
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 19.5000 11.2583i 0.784405 0.452876i
\(619\) −17.5000 + 30.3109i −0.703384 + 1.21830i 0.263887 + 0.964554i \(0.414995\pi\)
−0.967271 + 0.253744i \(0.918338\pi\)
\(620\) −1.50000 + 2.59808i −0.0602414 + 0.104341i
\(621\) 40.5000 + 23.3827i 1.62521 + 0.938315i
\(622\) 13.5000 + 23.3827i 0.541301 + 0.937560i
\(623\) 7.50000 12.9904i 0.300481 0.520449i
\(624\) 6.00000 + 1.73205i 0.240192 + 0.0693375i
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) −0.500000 + 0.866025i −0.0199840 + 0.0346133i
\(627\) 0 0
\(628\) −8.50000 14.7224i −0.339187 0.587489i
\(629\) 15.0000 0.598089
\(630\) −4.50000 + 7.79423i −0.179284 + 0.310530i
\(631\) −14.5000 + 25.1147i −0.577236 + 0.999802i 0.418559 + 0.908190i \(0.362535\pi\)
−0.995795 + 0.0916122i \(0.970798\pi\)
\(632\) 2.50000 4.33013i 0.0994447 0.172243i
\(633\) 19.5000 + 11.2583i 0.775055 + 0.447478i
\(634\) 4.50000 7.79423i 0.178718 0.309548i
\(635\) 16.5000 28.5788i 0.654783 1.13412i
\(636\) 10.3923i 0.412082i
\(637\) −15.0000 15.5885i −0.594322 0.617637i
\(638\) 0 0
\(639\) −22.5000 + 38.9711i −0.890086 + 1.54167i
\(640\) −1.50000 2.59808i −0.0592927 0.102698i
\(641\) −13.5000 23.3827i −0.533218 0.923561i −0.999247 0.0387913i \(-0.987649\pi\)
0.466029 0.884769i \(-0.345684\pi\)
\(642\) 4.50000 2.59808i 0.177601 0.102538i
\(643\) −16.0000 −0.630978 −0.315489 0.948929i \(-0.602169\pi\)
−0.315489 + 0.948929i \(0.602169\pi\)
\(644\) −9.00000 −0.354650
\(645\) −31.5000 18.1865i −1.24031 0.716094i
\(646\) −1.50000 2.59808i −0.0590167 0.102220i
\(647\) 10.5000 + 18.1865i 0.412798 + 0.714986i 0.995194 0.0979182i \(-0.0312184\pi\)
−0.582397 + 0.812905i \(0.697885\pi\)
\(648\) −9.00000 −0.353553
\(649\) 0 0
\(650\) −10.0000 10.3923i −0.392232 0.407620i
\(651\) −1.50000 0.866025i −0.0587896 0.0339422i
\(652\) −5.50000 + 9.52628i −0.215397 + 0.373078i
\(653\) −10.5000 + 18.1865i −0.410897 + 0.711694i −0.994988 0.0999939i \(-0.968118\pi\)
0.584091 + 0.811688i \(0.301451\pi\)
\(654\) 3.46410i 0.135457i
\(655\) −22.5000 + 38.9711i −0.879148 + 1.52273i
\(656\) 4.50000 7.79423i 0.175695 0.304314i
\(657\) −42.0000 −1.63858
\(658\) −3.00000 −0.116952
\(659\) −10.5000 18.1865i −0.409022 0.708447i 0.585758 0.810486i \(-0.300797\pi\)
−0.994780 + 0.102039i \(0.967463\pi\)
\(660\) 0 0
\(661\) −2.50000 + 4.33013i −0.0972387 + 0.168422i −0.910541 0.413419i \(-0.864334\pi\)
0.813302 + 0.581842i \(0.197668\pi\)
\(662\) 2.50000 + 4.33013i 0.0971653 + 0.168295i
\(663\) −13.5000 + 12.9904i −0.524297 + 0.504505i
\(664\) 1.50000 2.59808i 0.0582113 0.100825i
\(665\) 1.50000 + 2.59808i 0.0581675 + 0.100749i
\(666\) −7.50000 12.9904i −0.290619 0.503367i
\(667\) −27.0000 + 46.7654i −1.04544 + 1.81076i
\(668\) −4.50000 + 7.79423i −0.174110 + 0.301568i
\(669\) 13.8564i 0.535720i
\(670\) −3.00000 −0.115900
\(671\) 0 0
\(672\) 1.50000 0.866025i 0.0578638 0.0334077i
\(673\) 14.0000 0.539660 0.269830 0.962908i \(-0.413032\pi\)
0.269830 + 0.962908i \(0.413032\pi\)
\(674\) −6.50000 11.2583i −0.250371 0.433655i
\(675\) 18.0000 + 10.3923i 0.692820 + 0.400000i
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) −16.5000 + 28.5788i −0.634147 + 1.09837i 0.352549 + 0.935793i \(0.385315\pi\)
−0.986695 + 0.162581i \(0.948018\pi\)
\(678\) 10.3923i 0.399114i
\(679\) −6.50000 + 11.2583i −0.249447 + 0.432055i
\(680\) 9.00000 0.345134
\(681\) 13.5000 7.79423i 0.517321 0.298675i
\(682\) 0 0
\(683\) 10.5000 18.1865i 0.401771 0.695888i −0.592168 0.805814i \(-0.701728\pi\)
0.993940 + 0.109926i \(0.0350613\pi\)
\(684\) −1.50000 + 2.59808i −0.0573539 + 0.0993399i
\(685\) 4.50000 7.79423i 0.171936 0.297802i
\(686\) −13.0000 −0.496342
\(687\) 7.50000 4.33013i 0.286143 0.165205i
\(688\) 3.50000 + 6.06218i 0.133436 + 0.231118i
\(689\) 6.00000 20.7846i 0.228582 0.791831i
\(690\) 46.7654i 1.78033i
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −10.5000 18.1865i −0.399150 0.691348i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −6.00000 10.3923i −0.227593 0.394203i
\(696\) 10.3923i 0.393919i
\(697\) 13.5000 + 23.3827i 0.511349 + 0.885682i
\(698\) 10.0000 0.378506
\(699\) 10.3923i 0.393073i
\(700\) −4.00000 −0.151186
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 18.0000 + 5.19615i 0.679366 + 0.196116i
\(703\) −5.00000 −0.188579
\(704\) 0 0
\(705\) 15.5885i 0.587095i
\(706\) −6.00000 −0.225813
\(707\) −3.00000 5.19615i −0.112827 0.195421i
\(708\) 20.7846i 0.781133i
\(709\) 9.50000 + 16.4545i 0.356780 + 0.617961i 0.987421 0.158114i \(-0.0505412\pi\)
−0.630641 + 0.776075i \(0.717208\pi\)
\(710\) −45.0000 −1.68882
\(711\) 7.50000 12.9904i 0.281272 0.487177i
\(712\) 7.50000 + 12.9904i 0.281074 + 0.486835i
\(713\) −9.00000 −0.337053
\(714\) 5.19615i 0.194461i
\(715\) 0 0
\(716\) −4.50000 7.79423i −0.168173 0.291284i
\(717\) 22.5000 12.9904i 0.840278 0.485135i
\(718\) −24.0000 −0.895672
\(719\) 13.5000 23.3827i 0.503465 0.872027i −0.496527 0.868021i \(-0.665392\pi\)
0.999992 0.00400572i \(-0.00127506\pi\)
\(720\) −4.50000 7.79423i −0.167705 0.290474i
\(721\) −6.50000 + 11.2583i −0.242073 + 0.419282i
\(722\) −9.00000 15.5885i −0.334945 0.580142i
\(723\) −37.5000 + 21.6506i −1.39464 + 0.805196i
\(724\) −22.0000 −0.817624
\(725\) −12.0000 + 20.7846i −0.445669 + 0.771921i
\(726\) 19.0526i 0.707107i
\(727\) 15.5000 26.8468i 0.574863 0.995692i −0.421193 0.906971i \(-0.638389\pi\)
0.996056 0.0887213i \(-0.0282781\pi\)
\(728\) −3.50000 + 0.866025i −0.129719 + 0.0320970i
\(729\) −27.0000 −1.00000
\(730\) −21.0000 36.3731i −0.777245 1.34623i
\(731\) −21.0000 −0.776713
\(732\) −10.5000 + 6.06218i −0.388091 + 0.224065i
\(733\) 9.50000 + 16.4545i 0.350891 + 0.607760i 0.986406 0.164328i \(-0.0525456\pi\)
−0.635515 + 0.772088i \(0.719212\pi\)
\(734\) 16.0000 0.590571
\(735\) 31.1769i 1.14998i
\(736\) 4.50000 7.79423i 0.165872 0.287299i
\(737\) 0 0
\(738\) 13.5000 23.3827i 0.496942 0.860729i
\(739\) 3.50000 + 6.06218i 0.128750 + 0.223001i 0.923192 0.384338i \(-0.125570\pi\)
−0.794443 + 0.607339i \(0.792237\pi\)
\(740\) 7.50000 12.9904i 0.275705 0.477536i
\(741\) 4.50000 4.33013i 0.165312 0.159071i
\(742\) −3.00000 5.19615i −0.110133 0.190757i
\(743\) 13.5000 23.3827i 0.495267 0.857828i −0.504718 0.863284i \(-0.668404\pi\)
0.999985 + 0.00545664i \(0.00173691\pi\)
\(744\) 1.50000 0.866025i 0.0549927 0.0317500i
\(745\) 9.00000 + 15.5885i 0.329734 + 0.571117i
\(746\) −14.0000 −0.512576
\(747\) 4.50000 7.79423i 0.164646 0.285176i
\(748\) 0 0
\(749\) −1.50000 + 2.59808i −0.0548088 + 0.0949316i
\(750\) 5.19615i 0.189737i
\(751\) −26.5000 + 45.8993i −0.966999 + 1.67489i −0.262852 + 0.964836i \(0.584663\pi\)
−0.704146 + 0.710055i \(0.748670\pi\)
\(752\) 1.50000 2.59808i 0.0546994 0.0947421i
\(753\) −40.5000 23.3827i −1.47590 0.852112i
\(754\) −6.00000 + 20.7846i −0.218507 + 0.756931i
\(755\) 57.0000 2.07444
\(756\) 4.50000 2.59808i 0.163663 0.0944911i
\(757\) 3.50000 + 6.06218i 0.127210 + 0.220334i 0.922595 0.385771i \(-0.126065\pi\)
−0.795385 + 0.606105i \(0.792731\pi\)
\(758\) 14.5000 + 25.1147i 0.526664 + 0.912208i
\(759\) 0 0
\(760\) −3.00000 −0.108821
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) −16.5000 + 9.52628i −0.597732 + 0.345101i
\(763\) 1.00000 + 1.73205i 0.0362024 + 0.0627044i
\(764\) −1.50000 2.59808i −0.0542681 0.0939951i
\(765\) 27.0000 0.976187
\(766\) 36.0000 1.30073
\(767\) −12.0000 + 41.5692i −0.433295 + 1.50098i
\(768\) 1.73205i 0.0625000i
\(769\) −23.5000 + 40.7032i −0.847432 + 1.46779i 0.0360609 + 0.999350i \(0.488519\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) −22.5000 12.9904i −0.810318 0.467837i
\(772\) −11.5000 + 19.9186i −0.413894 + 0.716886i
\(773\) 1.50000 2.59808i 0.0539513 0.0934463i −0.837788 0.545995i \(-0.816152\pi\)
0.891740 + 0.452549i \(0.149485\pi\)
\(774\) 10.5000 + 18.1865i 0.377415 + 0.653701i
\(775\) −4.00000 −0.143684
\(776\) −6.50000 11.2583i −0.233336 0.404151i
\(777\) 7.50000 + 4.33013i 0.269061 + 0.155342i
\(778\) 4.50000 7.79423i 0.161333 0.279437i
\(779\) −4.50000 7.79423i −0.161229 0.279257i
\(780\) 4.50000 + 18.1865i 0.161126 + 0.651182i
\(781\) 0 0
\(782\) 13.5000 + 23.3827i 0.482759 + 0.836163i
\(783\) 31.1769i 1.11417i
\(784\) 3.00000 5.19615i 0.107143 0.185577i
\(785\) 25.5000 44.1673i 0.910134 1.57640i
\(786\) 22.5000 12.9904i 0.802548 0.463352i
\(787\) 8.00000 0.285169 0.142585 0.989783i \(-0.454459\pi\)
0.142585 + 0.989783i \(0.454459\pi\)
\(788\) −10.5000 18.1865i −0.374047 0.647868i
\(789\) 0 0
\(790\) 15.0000 0.533676
\(791\) 3.00000 + 5.19615i 0.106668 + 0.184754i
\(792\) 0 0
\(793\) 24.5000 6.06218i 0.870021 0.215274i
\(794\) −3.50000 + 6.06218i −0.124210 + 0.215139i
\(795\) −27.0000 + 15.5885i −0.957591 + 0.552866i
\(796\) 9.50000 16.4545i 0.336719 0.583214i
\(797\) 30.0000 1.06265 0.531327 0.847167i \(-0.321693\pi\)
0.531327 + 0.847167i \(0.321693\pi\)
\(798\) 1.73205i 0.0613139i
\(799\) 4.50000 + 7.79423i 0.159199 + 0.275740i
\(800\) 2.00000 3.46410i 0.0707107 0.122474i
\(801\) 22.5000 + 38.9711i 0.794998 + 1.37698i
\(802\) −4.50000 + 7.79423i −0.158901 + 0.275224i
\(803\) 0 0
\(804\) 1.50000 + 0.866025i 0.0529009 + 0.0305424i
\(805\) −13.5000 23.3827i −0.475812 0.824131i
\(806\) −3.50000 + 0.866025i −0.123282 + 0.0305044i
\(807\) −31.5000 18.1865i −1.10885 0.640196i
\(808\) 6.00000 0.211079
\(809\) 22.5000 + 38.9711i 0.791058 + 1.37015i 0.925312 + 0.379206i \(0.123803\pi\)
−0.134255 + 0.990947i \(0.542864\pi\)
\(810\) −13.5000 23.3827i −0.474342 0.821584i
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 3.00000 + 5.19615i 0.105279 + 0.182349i
\(813\) 16.5000 9.52628i 0.578680 0.334101i
\(814\) 0 0
\(815\) −33.0000 −1.15594
\(816\) −4.50000 2.59808i −0.157532 0.0909509i
\(817\) 7.00000 0.244899
\(818\) −14.0000 −0.489499
\(819\) −10.5000 + 2.59808i −0.366900 + 0.0907841i
\(820\) 27.0000 0.942881
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) −4.50000 + 2.59808i −0.156956 + 0.0906183i
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) −6.50000 11.2583i −0.226438 0.392203i
\(825\) 0 0
\(826\) 6.00000 + 10.3923i 0.208767 + 0.361595i
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 13.5000 23.3827i 0.469157 0.812605i
\(829\) −26.5000 45.8993i −0.920383 1.59415i −0.798823 0.601566i \(-0.794544\pi\)
−0.121560 0.992584i \(-0.538790\pi\)
\(830\) 9.00000 0.312395
\(831\) 25.5000 14.7224i 0.884585 0.510716i
\(832\) 1.00000 3.46410i 0.0346688 0.120096i
\(833\) 9.00000 + 15.5885i 0.311832 + 0.540108i
\(834\) 6.92820i 0.239904i
\(835\) −27.0000 −0.934374
\(836\) 0 0
\(837\) 4.50000 2.59808i 0.155543 0.0898027i
\(838\) −10.5000 + 18.1865i −0.362716 + 0.628243i
\(839\) 28.5000 + 49.3634i 0.983929 + 1.70422i 0.646601 + 0.762828i \(0.276190\pi\)
0.337328 + 0.941387i \(0.390477\pi\)
\(840\) 4.50000 + 2.59808i 0.155265 + 0.0896421i
\(841\) 7.00000 0.241379
\(842\) −9.50000 + 16.4545i −0.327392 + 0.567059i
\(843\) −4.50000 2.59808i −0.154988 0.0894825i
\(844\) 6.50000 11.2583i 0.223739 0.387528i
\(845\) 1.50000 38.9711i 0.0516016 1.34065i
\(846\) 4.50000 7.79423i 0.154713 0.267971i
\(847\) −5.50000 9.52628i −0.188982 0.327327i
\(848\) 6.00000 0.206041
\(849\) 1.50000 + 0.866025i 0.0514799 + 0.0297219i
\(850\) 6.00000 + 10.3923i 0.205798 + 0.356453i
\(851\) 45.0000 1.54258
\(852\) 22.5000 + 12.9904i 0.770837 + 0.445043i
\(853\) 9.50000 16.4545i 0.325274 0.563391i −0.656294 0.754505i \(-0.727877\pi\)
0.981568 + 0.191115i \(0.0612102\pi\)
\(854\) 3.50000 6.06218i 0.119768 0.207443i
\(855\) −9.00000 −0.307794
\(856\) −1.50000 2.59808i −0.0512689 0.0888004i
\(857\) 16.5000 28.5788i 0.563629 0.976235i −0.433546 0.901131i \(-0.642738\pi\)
0.997176 0.0751033i \(-0.0239287\pi\)
\(858\) 0 0
\(859\) −20.5000 35.5070i −0.699451 1.21148i −0.968657 0.248402i \(-0.920095\pi\)
0.269206 0.963083i \(-0.413239\pi\)
\(860\) −10.5000 + 18.1865i −0.358047 + 0.620156i
\(861\) 15.5885i 0.531253i
\(862\) −4.50000 7.79423i −0.153271 0.265472i
\(863\) −12.0000 −0.408485 −0.204242 0.978920i \(-0.565473\pi\)
−0.204242 + 0.978920i \(0.565473\pi\)
\(864\) 5.19615i 0.176777i
\(865\) 31.5000 54.5596i 1.07103 1.85508i
\(866\) 5.50000 9.52628i 0.186898 0.323716i
\(867\) −12.0000 + 6.92820i −0.407541 + 0.235294i
\(868\) −0.500000 + 0.866025i −0.0169711 + 0.0293948i
\(869\) 0 0
\(870\) 27.0000 15.5885i 0.915386 0.528498i
\(871\) −2.50000 2.59808i −0.0847093 0.0880325i
\(872\) −2.00000 −0.0677285
\(873\) −19.5000 33.7750i −0.659975 1.14311i
\(874\) −4.50000 7.79423i −0.152215 0.263644i
\(875\) 1.50000 + 2.59808i 0.0507093 + 0.0878310i
\(876\) 24.2487i 0.819288i
\(877\) −10.0000 −0.337676 −0.168838 0.985644i \(-0.554001\pi\)
−0.168838 + 0.985644i \(0.554001\pi\)
\(878\) −32.0000 −1.07995
\(879\) 10.3923i 0.350524i
\(880\) 0 0
\(881\) 22.5000 + 38.9711i 0.758044 + 1.31297i 0.943847 + 0.330384i \(0.107178\pi\)
−0.185802 + 0.982587i \(0.559488\pi\)
\(882\) 9.00000 15.5885i 0.303046 0.524891i
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) 7.50000 + 7.79423i 0.252252 + 0.262148i
\(885\) 54.0000 31.1769i 1.81519 1.04800i
\(886\) −4.50000 + 7.79423i −0.151180 + 0.261852i
\(887\) −4.50000 + 7.79423i −0.151095 + 0.261705i −0.931630 0.363407i \(-0.881613\pi\)
0.780535 + 0.625112i \(0.214947\pi\)
\(888\) −7.50000 + 4.33013i −0.251684 + 0.145310i
\(889\) 5.50000 9.52628i 0.184464 0.319501i
\(890\) −22.5000 + 38.9711i −0.754202 + 1.30632i
\(891\) 0 0
\(892\) 8.00000 0.267860
\(893\) −1.50000 2.59808i −0.0501956 0.0869413i
\(894\) 10.3923i 0.347571i
\(895\) 13.5000 23.3827i 0.451255 0.781597i
\(896\) −0.500000 0.866025i −0.0167038 0.0289319i
\(897\) −40.5000 + 38.9711i −1.35226 + 1.30121i
\(898\) −4.50000 + 7.79423i −0.150167 + 0.260097i
\(899\) 3.00000 + 5.19615i 0.100056 + 0.173301i
\(900\) 6.00000 10.3923i 0.200000 0.346410i
\(901\) −9.00000 + 15.5885i −0.299833 + 0.519327i
\(902\) 0 0
\(903\) −10.5000 6.06218i −0.349418 0.201737i
\(904\) −6.00000 −0.199557
\(905\) −33.0000 57.1577i −1.09696 1.89999i
\(906\) −28.5000 16.4545i −0.946849 0.546664i
\(907\) −40.0000 −1.32818 −0.664089 0.747653i \(-0.731180\pi\)
−0.664089 + 0.747653i \(0.731180\pi\)
\(908\) −4.50000 7.79423i −0.149338 0.258661i
\(909\) 18.0000 0.597022
\(910\) −7.50000 7.79423i −0.248623 0.258376i
\(911\) 7.50000 12.9904i 0.248486 0.430391i −0.714620 0.699513i \(-0.753400\pi\)
0.963106 + 0.269122i \(0.0867336\pi\)
\(912\) 1.50000 + 0.866025i 0.0496700 + 0.0286770i
\(913\) 0 0
\(914\) 10.0000 0.330771
\(915\) −31.5000 18.1865i −1.04136 0.601228i
\(916\) −2.50000 4.33013i −0.0826023 0.143071i
\(917\) −7.50000 + 12.9904i −0.247672 + 0.428980i
\(918\) −13.5000 7.79423i −0.445566 0.257248i
\(919\) 21.5000 37.2391i 0.709220 1.22840i −0.255927 0.966696i \(-0.582381\pi\)
0.965147 0.261708i \(-0.0842858\pi\)
\(920\) 27.0000 0.890164
\(921\) 48.4974i 1.59804i
\(922\) −13.5000 23.3827i −0.444599 0.770068i
\(923\) −37.5000 38.9711i −1.23433 1.28275i
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 5.50000 + 9.52628i 0.180741 + 0.313053i
\(927\) −19.5000 33.7750i −0.640464 1.10932i
\(928\) −6.00000 −0.196960
\(929\) 10.5000 + 18.1865i 0.344494 + 0.596681i 0.985262 0.171054i \(-0.0547172\pi\)
−0.640768 + 0.767735i \(0.721384\pi\)
\(930\) 4.50000 + 2.59808i 0.147561 + 0.0851943i
\(931\) −3.00000 5.19615i −0.0983210 0.170297i
\(932\) 6.00000 0.196537
\(933\) 40.5000 23.3827i 1.32591 0.765515i
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) 3.00000 10.3923i 0.0980581 0.339683i
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) −1.00000 −0.0326512
\(939\) 1.50000 + 0.866025i 0.0489506 + 0.0282617i
\(940\) 9.00000 0.293548
\(941\) 7.50000 + 12.9904i 0.244493 + 0.423474i 0.961989 0.273088i \(-0.0880451\pi\)
−0.717496 + 0.696563i \(0.754712\pi\)
\(942\) −25.5000 + 14.7224i −0.830835 + 0.479683i
\(943\) 40.5000 + 70.1481i 1.31886 + 2.28434i
\(944\) −12.0000 −0.390567
\(945\) 13.5000 + 7.79423i 0.439155 + 0.253546i
\(946\) 0 0
\(947\) −12.0000 −0.389948 −0.194974 0.980808i \(-0.562462\pi\)
−0.194974 + 0.980808i \(0.562462\pi\)
\(948\) −7.50000 4.33013i −0.243589 0.140636i
\(949\) 14.0000 48.4974i 0.454459 1.57429i
\(950\) −2.00000 3.46410i −0.0648886 0.112390i
\(951\) −13.5000 7.79423i −0.437767 0.252745i
\(952\) 3.00000 0.0972306
\(953\) 4.50000 7.79423i 0.145769 0.252480i −0.783890 0.620899i \(-0.786768\pi\)
0.929660 + 0.368419i \(0.120101\pi\)
\(954\) 18.0000 0.582772
\(955\) 4.50000 7.79423i 0.145617 0.252215i
\(956\) −7.50000 12.9904i −0.242567 0.420139i
\(957\) 0 0
\(958\) 0 0
\(959\) 1.50000 2.59808i 0.0484375 0.0838963i
\(960\) −4.50000 + 2.59808i −0.145237 + 0.0838525i
\(961\) 15.0000 25.9808i 0.483871 0.838089i
\(962\) 17.5000 4.33013i 0.564223 0.139609i
\(963\) −4.50000 7.79423i −0.145010 0.251166i
\(964\) 12.5000 + 21.6506i 0.402598 + 0.697320i
\(965\) −69.0000 −2.22119
\(966\) 15.5885i 0.501550i
\(967\) 6.50000 + 11.2583i 0.209026 + 0.362043i 0.951408 0.307933i \(-0.0996374\pi\)
−0.742382 + 0.669977i \(0.766304\pi\)
\(968\) 11.0000 0.353553
\(969\) −4.50000 + 2.59808i −0.144561 + 0.0834622i
\(970\) 19.5000 33.7750i 0.626107 1.08445i
\(971\) −7.50000 + 12.9904i −0.240686 + 0.416881i −0.960910 0.276861i \(-0.910706\pi\)
0.720224 + 0.693742i \(0.244039\pi\)
\(972\) 15.5885i 0.500000i
\(973\) −2.00000 3.46410i −0.0641171 0.111054i
\(974\) −9.50000 + 16.4545i −0.304400 + 0.527236i
\(975\) −18.0000 + 17.3205i −0.576461 + 0.554700i
\(976\) 3.50000 + 6.06218i 0.112032 + 0.194046i
\(977\) −1.50000 + 2.59808i −0.0479893 + 0.0831198i −0.889022 0.457864i \(-0.848615\pi\)
0.841033 + 0.540984i \(0.181948\pi\)
\(978\) 16.5000 + 9.52628i 0.527612 + 0.304617i
\(979\) 0 0
\(980\) 18.0000 0.574989
\(981\) −6.00000 −0.191565
\(982\) 7.50000 12.9904i 0.239335 0.414540i
\(983\) −16.5000 + 28.5788i −0.526268 + 0.911523i 0.473263 + 0.880921i \(0.343076\pi\)
−0.999532 + 0.0306024i \(0.990257\pi\)
\(984\) −13.5000 7.79423i −0.430364 0.248471i
\(985\) 31.5000 54.5596i 1.00367 1.73841i
\(986\) 9.00000 15.5885i 0.286618 0.496438i
\(987\) 5.19615i 0.165395i
\(988\) −2.50000 2.59808i −0.0795356 0.0826558i
\(989\) −63.0000 −2.00328
\(990\) 0 0
\(991\) 12.5000 + 21.6506i 0.397076 + 0.687755i 0.993364 0.115015i \(-0.0366917\pi\)
−0.596288 + 0.802771i \(0.703358\pi\)
\(992\) −0.500000 0.866025i −0.0158750 0.0274963i
\(993\) 7.50000 4.33013i 0.238005 0.137412i
\(994\) −15.0000 −0.475771
\(995\) 57.0000 1.80702
\(996\) −4.50000 2.59808i −0.142588 0.0823232i
\(997\) 15.5000 + 26.8468i 0.490890 + 0.850246i 0.999945 0.0104877i \(-0.00333839\pi\)
−0.509055 + 0.860734i \(0.670005\pi\)
\(998\) 2.50000 + 4.33013i 0.0791361 + 0.137068i
\(999\) −22.5000 + 12.9904i −0.711868 + 0.410997i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 234.2.f.a.133.1 2
3.2 odd 2 702.2.f.b.289.1 2
9.4 even 3 234.2.g.b.211.1 yes 2
9.5 odd 6 702.2.g.a.523.1 2
13.9 even 3 234.2.g.b.61.1 yes 2
39.35 odd 6 702.2.g.a.451.1 2
117.22 even 3 inner 234.2.f.a.139.1 yes 2
117.113 odd 6 702.2.f.b.685.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.f.a.133.1 2 1.1 even 1 trivial
234.2.f.a.139.1 yes 2 117.22 even 3 inner
234.2.g.b.61.1 yes 2 13.9 even 3
234.2.g.b.211.1 yes 2 9.4 even 3
702.2.f.b.289.1 2 3.2 odd 2
702.2.f.b.685.1 2 117.113 odd 6
702.2.g.a.451.1 2 39.35 odd 6
702.2.g.a.523.1 2 9.5 odd 6