| L(s) = 1 | − 2-s − 1.73i·3-s + 4-s + (1.5 − 2.59i)5-s + 1.73i·6-s + (0.5 − 0.866i)7-s − 8-s − 2.99·9-s + (−1.5 + 2.59i)10-s − 1.73i·12-s + (1 + 3.46i)13-s + (−0.5 + 0.866i)14-s + (−4.5 − 2.59i)15-s + 16-s + (−1.5 − 2.59i)17-s + 2.99·18-s + ⋯ |
| L(s) = 1 | − 0.707·2-s − 0.999i·3-s + 0.5·4-s + (0.670 − 1.16i)5-s + 0.707i·6-s + (0.188 − 0.327i)7-s − 0.353·8-s − 0.999·9-s + (−0.474 + 0.821i)10-s − 0.499i·12-s + (0.277 + 0.960i)13-s + (−0.133 + 0.231i)14-s + (−1.16 − 0.670i)15-s + 0.250·16-s + (−0.363 − 0.630i)17-s + 0.707·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.329 + 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.548745 - 0.773092i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.548745 - 0.773092i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + T \) |
| 3 | \( 1 + 1.73iT \) |
| 13 | \( 1 + (-1 - 3.46i)T \) |
| good | 5 | \( 1 + (-1.5 + 2.59i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + 11T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.5 + 7.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (2.5 - 4.33i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 - 7.79i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.5 + 6.06i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.5 - 2.59i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + 12T + 59T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7.5 - 12.9i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 14T + 73T^{2} \) |
| 79 | \( 1 + (2.5 + 4.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.5 + 2.59i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (7.5 - 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.5 + 11.2i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.02776659183464191278861516197, −10.96907613427425333232802989245, −9.719519435748406270377439762616, −8.791046144755337286342646609256, −8.147201587092163436628687804771, −6.88796779699228937821140960342, −6.01183268293505075064948135086, −4.60937731851655237078049269949, −2.31399535242109755378314829303, −1.03069248005832328975211427130,
2.41514060346324109502670651818, 3.61633223728820169754740593841, 5.47432360237672440155261835779, 6.28518426902667916156014576709, 7.67226700054107553368356085374, 8.764545666429007937560486500874, 9.744585950465248339773846043718, 10.48812332318676872274100453231, 11.01558892482978496562343132860, 12.12212029561317654163808532450