L(s) = 1 | + (0.707 − 0.707i)2-s + (1.72 + 0.0878i)3-s − 1.00i·4-s + (−2.64 − 0.707i)5-s + (1.28 − 1.16i)6-s + (3.36 + 0.902i)7-s + (−0.707 − 0.707i)8-s + (2.98 + 0.303i)9-s + (−2.36 + 1.36i)10-s + (−1.29 − 1.29i)11-s + (0.0878 − 1.72i)12-s + (2.77 − 2.29i)13-s + (3.01 − 1.74i)14-s + (−4.50 − 1.45i)15-s − 1.00·16-s + (−0.419 + 0.726i)17-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + (0.998 + 0.0507i)3-s − 0.500i·4-s + (−1.18 − 0.316i)5-s + (0.524 − 0.473i)6-s + (1.27 + 0.340i)7-s + (−0.250 − 0.250i)8-s + (0.994 + 0.101i)9-s + (−0.748 + 0.432i)10-s + (−0.389 − 0.389i)11-s + (0.0253 − 0.499i)12-s + (0.770 − 0.637i)13-s + (0.806 − 0.465i)14-s + (−1.16 − 0.375i)15-s − 0.250·16-s + (−0.101 + 0.176i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 234 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.656 + 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.76937 - 0.806166i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.76937 - 0.806166i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1.72 - 0.0878i)T \) |
| 13 | \( 1 + (-2.77 + 2.29i)T \) |
good | 5 | \( 1 + (2.64 + 0.707i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-3.36 - 0.902i)T + (6.06 + 3.5i)T^{2} \) |
| 11 | \( 1 + (1.29 + 1.29i)T + 11iT^{2} \) |
| 17 | \( 1 + (0.419 - 0.726i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (6.94 - 1.86i)T + (16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 + (3.18 - 5.52i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 6.05iT - 29T^{2} \) |
| 31 | \( 1 + (1.99 - 7.43i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (4.09 + 1.09i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + (1.07 + 4.01i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (-7.47 + 4.31i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.46 + 2.00i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + 3.92iT - 53T^{2} \) |
| 59 | \( 1 + (5.26 + 5.26i)T + 59iT^{2} \) |
| 61 | \( 1 + (-0.247 - 0.428i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.34 + 1.43i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (-1.48 - 5.55i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (9.66 - 9.66i)T - 73iT^{2} \) |
| 79 | \( 1 + (0.892 - 1.54i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.07 + 15.2i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 + (-0.385 + 1.43i)T + (-77.0 - 44.5i)T^{2} \) |
| 97 | \( 1 + (-4.50 + 16.7i)T + (-84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19280558585957473289216799568, −11.07932063357914598768337077306, −10.45456383442751010771666955922, −8.675579575201664504065788805421, −8.404918584834844251254146394898, −7.34358545763668899932339947467, −5.49623051706310724994070006952, −4.28645555823397683942387694710, −3.44153486310953352846277930990, −1.78011256973782064655196993641,
2.33450289998816887439109543694, 4.14401396106080470960231354727, 4.37569652384319929645317373701, 6.44019503729164085761689284523, 7.62668364499443227069868532478, 8.036682561711370426347950937832, 8.955976325421976565540661973571, 10.59804580090308258033108526103, 11.41124286123069041204551627465, 12.43440631593047181392952151273