Properties

Label 2-232730-1.1-c1-0-18
Degree $2$
Conductor $232730$
Sign $1$
Analytic cond. $1858.35$
Root an. cond. $43.1086$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 5-s + 2·6-s − 3·7-s − 8-s + 9-s − 10-s − 4·11-s − 2·12-s − 5·13-s + 3·14-s − 2·15-s + 16-s + 17-s − 18-s + 4·19-s + 20-s + 6·21-s + 4·22-s + 2·23-s + 2·24-s + 25-s + 5·26-s + 4·27-s − 3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.447·5-s + 0.816·6-s − 1.13·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s − 0.577·12-s − 1.38·13-s + 0.801·14-s − 0.516·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.917·19-s + 0.223·20-s + 1.30·21-s + 0.852·22-s + 0.417·23-s + 0.408·24-s + 1/5·25-s + 0.980·26-s + 0.769·27-s − 0.566·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 232730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 232730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(232730\)    =    \(2 \cdot 5 \cdot 17 \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(1858.35\)
Root analytic conductor: \(43.1086\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 232730,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
17 \( 1 - T \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14689089322206, −12.91683338040735, −12.26300479403115, −11.86871333259935, −11.72379824756486, −10.89100449598862, −10.44880093663169, −10.09111196302098, −9.886558696022225, −9.408057566782730, −8.597109365337508, −8.394237777931165, −7.561321801184535, −7.055200905412966, −6.872781554475237, −6.260056755441048, −5.683175754788897, −5.296057402694531, −4.977773868934858, −4.302318070399941, −3.227386150123176, −2.915647562163781, −2.526373497453881, −1.606728656601707, −0.9162575606294470, 0, 0, 0.9162575606294470, 1.606728656601707, 2.526373497453881, 2.915647562163781, 3.227386150123176, 4.302318070399941, 4.977773868934858, 5.296057402694531, 5.683175754788897, 6.260056755441048, 6.872781554475237, 7.055200905412966, 7.561321801184535, 8.394237777931165, 8.597109365337508, 9.408057566782730, 9.886558696022225, 10.09111196302098, 10.44880093663169, 10.89100449598862, 11.72379824756486, 11.86871333259935, 12.26300479403115, 12.91683338040735, 13.14689089322206

Graph of the $Z$-function along the critical line