Properties

Label 2-213282-1.1-c1-0-47
Degree $2$
Conductor $213282$
Sign $-1$
Analytic cond. $1703.06$
Root an. cond. $41.2682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2·5-s − 8-s − 2·10-s + 4·11-s + 2·13-s + 16-s + 2·20-s − 4·22-s − 25-s − 2·26-s + 6·29-s − 32-s − 2·37-s − 2·40-s + 41-s + 4·43-s + 4·44-s − 7·49-s + 50-s + 2·52-s + 6·53-s + 8·55-s − 6·58-s − 12·59-s + 6·61-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.894·5-s − 0.353·8-s − 0.632·10-s + 1.20·11-s + 0.554·13-s + 1/4·16-s + 0.447·20-s − 0.852·22-s − 1/5·25-s − 0.392·26-s + 1.11·29-s − 0.176·32-s − 0.328·37-s − 0.316·40-s + 0.156·41-s + 0.609·43-s + 0.603·44-s − 49-s + 0.141·50-s + 0.277·52-s + 0.824·53-s + 1.07·55-s − 0.787·58-s − 1.56·59-s + 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(213282\)    =    \(2 \cdot 3^{2} \cdot 17^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(1703.06\)
Root analytic conductor: \(41.2682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 213282,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
17 \( 1 \)
41 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.30416606412500, −12.70187188908746, −12.17707207929236, −11.85706461923533, −11.23030223645031, −10.90664657171121, −10.29775711661173, −9.901957851976622, −9.485434777386435, −8.996784725616432, −8.694795930006361, −8.093813523077270, −7.601133559906347, −6.960054123990043, −6.416959035653135, −6.252145893086363, −5.669049388526883, −5.031913484391563, −4.445991129556355, −3.727059786888443, −3.349209940954718, −2.467990364816385, −2.108228289249576, −1.249840857750765, −1.093099780622058, 0, 1.093099780622058, 1.249840857750765, 2.108228289249576, 2.467990364816385, 3.349209940954718, 3.727059786888443, 4.445991129556355, 5.031913484391563, 5.669049388526883, 6.252145893086363, 6.416959035653135, 6.960054123990043, 7.601133559906347, 8.093813523077270, 8.694795930006361, 8.996784725616432, 9.485434777386435, 9.901957851976622, 10.29775711661173, 10.90664657171121, 11.23030223645031, 11.85706461923533, 12.17707207929236, 12.70187188908746, 13.30416606412500

Graph of the $Z$-function along the critical line