Properties

Label 2-213282-1.1-c1-0-36
Degree $2$
Conductor $213282$
Sign $-1$
Analytic cond. $1703.06$
Root an. cond. $41.2682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 3·5-s − 2·7-s + 8-s + 3·10-s − 6·11-s − 13-s − 2·14-s + 16-s + 5·19-s + 3·20-s − 6·22-s − 6·23-s + 4·25-s − 26-s − 2·28-s + 31-s + 32-s − 6·35-s − 2·37-s + 5·38-s + 3·40-s − 41-s + 8·43-s − 6·44-s − 6·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.755·7-s + 0.353·8-s + 0.948·10-s − 1.80·11-s − 0.277·13-s − 0.534·14-s + 1/4·16-s + 1.14·19-s + 0.670·20-s − 1.27·22-s − 1.25·23-s + 4/5·25-s − 0.196·26-s − 0.377·28-s + 0.179·31-s + 0.176·32-s − 1.01·35-s − 0.328·37-s + 0.811·38-s + 0.474·40-s − 0.156·41-s + 1.21·43-s − 0.904·44-s − 0.884·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(213282\)    =    \(2 \cdot 3^{2} \cdot 17^{2} \cdot 41\)
Sign: $-1$
Analytic conductor: \(1703.06\)
Root analytic conductor: \(41.2682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 213282,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
17 \( 1 \)
41 \( 1 + T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38708174699003, −12.76439964205008, −12.46274777497813, −12.10365506783910, −11.34976961829566, −10.80707769608667, −10.40473636069564, −10.00495798941815, −9.510672571912640, −9.361487627926008, −8.294971151390403, −8.072132911196718, −7.371253322816288, −6.959151903378127, −6.396940021873336, −5.767833820050326, −5.503257463634836, −5.261097096451434, −4.487713186057782, −3.878169193517996, −3.216050802641507, −2.553111165583232, −2.460786067954149, −1.728818231063746, −0.8781454315988784, 0, 0.8781454315988784, 1.728818231063746, 2.460786067954149, 2.553111165583232, 3.216050802641507, 3.878169193517996, 4.487713186057782, 5.261097096451434, 5.503257463634836, 5.767833820050326, 6.396940021873336, 6.959151903378127, 7.371253322816288, 8.072132911196718, 8.294971151390403, 9.361487627926008, 9.510672571912640, 10.00495798941815, 10.40473636069564, 10.80707769608667, 11.34976961829566, 12.10365506783910, 12.46274777497813, 12.76439964205008, 13.38708174699003

Graph of the $Z$-function along the critical line