Properties

Label 2-213282-1.1-c1-0-17
Degree $2$
Conductor $213282$
Sign $1$
Analytic cond. $1703.06$
Root an. cond. $41.2682$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 4·7-s + 8-s + 10-s + 4·11-s − 5·13-s + 4·14-s + 16-s − 3·19-s + 20-s + 4·22-s − 8·23-s − 4·25-s − 5·26-s + 4·28-s − 7·31-s + 32-s + 4·35-s + 4·37-s − 3·38-s + 40-s − 41-s − 6·43-s + 4·44-s − 8·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 1.51·7-s + 0.353·8-s + 0.316·10-s + 1.20·11-s − 1.38·13-s + 1.06·14-s + 1/4·16-s − 0.688·19-s + 0.223·20-s + 0.852·22-s − 1.66·23-s − 4/5·25-s − 0.980·26-s + 0.755·28-s − 1.25·31-s + 0.176·32-s + 0.676·35-s + 0.657·37-s − 0.486·38-s + 0.158·40-s − 0.156·41-s − 0.914·43-s + 0.603·44-s − 1.17·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213282 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(213282\)    =    \(2 \cdot 3^{2} \cdot 17^{2} \cdot 41\)
Sign: $1$
Analytic conductor: \(1703.06\)
Root analytic conductor: \(41.2682\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 213282,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.928072602\)
\(L(\frac12)\) \(\approx\) \(4.928072602\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
17 \( 1 \)
41 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 7 T + p T^{2} \) 1.59.ah
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 15 T + p T^{2} \) 1.83.ap
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.94939255519536, −12.49404093856213, −11.99817149279028, −11.71547774992131, −11.32326732026999, −10.75100343642929, −10.27775215456975, −9.689350875891135, −9.375925926078703, −8.704326791916791, −8.122251825802809, −7.757084453420524, −7.296904113222435, −6.656791259092310, −6.231632962902982, −5.593900624477163, −5.280962632799135, −4.617732446703791, −4.211490516235148, −3.864899611786365, −3.052565537442114, −2.157952673549272, −1.967598877900274, −1.536810160730445, −0.5035198731693473, 0.5035198731693473, 1.536810160730445, 1.967598877900274, 2.157952673549272, 3.052565537442114, 3.864899611786365, 4.211490516235148, 4.617732446703791, 5.280962632799135, 5.593900624477163, 6.231632962902982, 6.656791259092310, 7.296904113222435, 7.757084453420524, 8.122251825802809, 8.704326791916791, 9.375925926078703, 9.689350875891135, 10.27775215456975, 10.75100343642929, 11.32326732026999, 11.71547774992131, 11.99817149279028, 12.49404093856213, 12.94939255519536

Graph of the $Z$-function along the critical line