Properties

Label 2-213-1.1-c1-0-4
Degree $2$
Conductor $213$
Sign $1$
Analytic cond. $1.70081$
Root an. cond. $1.30415$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 2·5-s + 6-s + 2·7-s − 3·8-s + 9-s + 2·10-s − 12-s − 2·13-s + 2·14-s + 2·15-s − 16-s + 18-s − 2·20-s + 2·21-s − 3·24-s − 25-s − 2·26-s + 27-s − 2·28-s − 2·29-s + 2·30-s − 10·31-s + 5·32-s + 4·35-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.894·5-s + 0.408·6-s + 0.755·7-s − 1.06·8-s + 1/3·9-s + 0.632·10-s − 0.288·12-s − 0.554·13-s + 0.534·14-s + 0.516·15-s − 1/4·16-s + 0.235·18-s − 0.447·20-s + 0.436·21-s − 0.612·24-s − 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.377·28-s − 0.371·29-s + 0.365·30-s − 1.79·31-s + 0.883·32-s + 0.676·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 213 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 213 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(213\)    =    \(3 \cdot 71\)
Sign: $1$
Analytic conductor: \(1.70081\)
Root analytic conductor: \(1.30415\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 213,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.948116218\)
\(L(\frac12)\) \(\approx\) \(1.948116218\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
71 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.69371666154320068047931531822, −11.58416538134391689105524935957, −10.24964466347711041141788937449, −9.340867901774206272924397808123, −8.538079217351861871995790864690, −7.26942572648918184499875106677, −5.77911041919239232481630021544, −4.93642128518106609960687227916, −3.66708077258385286242308094212, −2.10246999762039359182885572844, 2.10246999762039359182885572844, 3.66708077258385286242308094212, 4.93642128518106609960687227916, 5.77911041919239232481630021544, 7.26942572648918184499875106677, 8.538079217351861871995790864690, 9.340867901774206272924397808123, 10.24964466347711041141788937449, 11.58416538134391689105524935957, 12.69371666154320068047931531822

Graph of the $Z$-function along the critical line