Properties

Label 2-2040-1.1-c1-0-18
Degree $2$
Conductor $2040$
Sign $1$
Analytic cond. $16.2894$
Root an. cond. $4.03602$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 2·7-s + 9-s + 4·11-s + 4·13-s + 15-s + 17-s − 4·19-s + 2·21-s + 4·23-s + 25-s + 27-s − 10·29-s + 4·33-s + 2·35-s + 2·37-s + 4·39-s + 4·41-s − 10·43-s + 45-s − 3·49-s + 51-s − 2·53-s + 4·55-s − 4·57-s + 2·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 1.20·11-s + 1.10·13-s + 0.258·15-s + 0.242·17-s − 0.917·19-s + 0.436·21-s + 0.834·23-s + 1/5·25-s + 0.192·27-s − 1.85·29-s + 0.696·33-s + 0.338·35-s + 0.328·37-s + 0.640·39-s + 0.624·41-s − 1.52·43-s + 0.149·45-s − 3/7·49-s + 0.140·51-s − 0.274·53-s + 0.539·55-s − 0.529·57-s + 0.260·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2040\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 17\)
Sign: $1$
Analytic conductor: \(16.2894\)
Root analytic conductor: \(4.03602\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2040,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.935090342\)
\(L(\frac12)\) \(\approx\) \(2.935090342\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
17 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 12 T + p T^{2} \) 1.97.m
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.051847317551521100613257277892, −8.497753703559820135349786623129, −7.69617674082702102669180579151, −6.74619398694817837843337274866, −6.07522311121004303923167697519, −5.07485777240852541322558549872, −4.09089498903595190596807990628, −3.38770868820964526555865969320, −2.03549912634207135657753200213, −1.28213981068191233640030972352, 1.28213981068191233640030972352, 2.03549912634207135657753200213, 3.38770868820964526555865969320, 4.09089498903595190596807990628, 5.07485777240852541322558549872, 6.07522311121004303923167697519, 6.74619398694817837843337274866, 7.69617674082702102669180579151, 8.497753703559820135349786623129, 9.051847317551521100613257277892

Graph of the $Z$-function along the critical line