Properties

Label 2-200376-1.1-c1-0-50
Degree $2$
Conductor $200376$
Sign $-1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 4·13-s + 6·17-s + 4·19-s − 23-s − 4·25-s + 2·29-s + 31-s + 35-s − 9·41-s − 43-s + 4·47-s − 6·49-s − 3·53-s − 14·59-s − 2·61-s + 4·65-s − 10·67-s − 2·71-s + 79-s − 12·83-s + 6·85-s − 9·89-s + 4·91-s + 4·95-s − 10·97-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 1.10·13-s + 1.45·17-s + 0.917·19-s − 0.208·23-s − 4/5·25-s + 0.371·29-s + 0.179·31-s + 0.169·35-s − 1.40·41-s − 0.152·43-s + 0.583·47-s − 6/7·49-s − 0.412·53-s − 1.82·59-s − 0.256·61-s + 0.496·65-s − 1.22·67-s − 0.237·71-s + 0.112·79-s − 1.31·83-s + 0.650·85-s − 0.953·89-s + 0.419·91-s + 0.410·95-s − 1.01·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46233594759948, −12.80749808693050, −12.34273304915065, −11.76249249261308, −11.59730330565405, −10.91071473115380, −10.46866318788078, −9.900385681167969, −9.706279022657202, −9.026438617562831, −8.505605142112078, −8.105353025799178, −7.548705988888743, −7.215062694208348, −6.371236153338847, −5.997245235976679, −5.637370128142803, −5.012526291872186, −4.543179245161562, −3.812403085012671, −3.247042768652817, −2.965532552029545, −1.948936402527584, −1.468012844902843, −1.034236323501784, 0, 1.034236323501784, 1.468012844902843, 1.948936402527584, 2.965532552029545, 3.247042768652817, 3.812403085012671, 4.543179245161562, 5.012526291872186, 5.637370128142803, 5.997245235976679, 6.371236153338847, 7.215062694208348, 7.548705988888743, 8.105353025799178, 8.505605142112078, 9.026438617562831, 9.706279022657202, 9.900385681167969, 10.46866318788078, 10.91071473115380, 11.59730330565405, 11.76249249261308, 12.34273304915065, 12.80749808693050, 13.46233594759948

Graph of the $Z$-function along the critical line