Properties

Label 2-200376-1.1-c1-0-11
Degree $2$
Conductor $200376$
Sign $1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·7-s + 5·13-s − 3·17-s + 23-s − 4·25-s − 3·29-s + 5·31-s − 3·35-s + 3·37-s − 10·41-s + 6·43-s + 3·47-s + 2·49-s + 10·53-s − 8·59-s + 8·61-s + 5·65-s + 11·67-s + 3·71-s + 6·73-s + 79-s + 6·83-s − 3·85-s + 16·89-s − 15·91-s − 2·97-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.13·7-s + 1.38·13-s − 0.727·17-s + 0.208·23-s − 4/5·25-s − 0.557·29-s + 0.898·31-s − 0.507·35-s + 0.493·37-s − 1.56·41-s + 0.914·43-s + 0.437·47-s + 2/7·49-s + 1.37·53-s − 1.04·59-s + 1.02·61-s + 0.620·65-s + 1.34·67-s + 0.356·71-s + 0.702·73-s + 0.112·79-s + 0.658·83-s − 0.325·85-s + 1.69·89-s − 1.57·91-s − 0.203·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.468251260\)
\(L(\frac12)\) \(\approx\) \(2.468251260\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + p T^{2} \) 1.19.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.13051349781459, −12.79240228006369, −12.10044743382050, −11.66134253177173, −11.19074515281587, −10.62895106069463, −10.27256125284384, −9.731286488383858, −9.254382349496506, −8.962530261756539, −8.289603966737793, −7.961562689676261, −7.146353487814487, −6.684812231778760, −6.341030840966859, −5.848548383088903, −5.442934484262600, −4.680423917455344, −4.082104214576656, −3.539504959524621, −3.209963550372227, −2.318396488242236, −2.001976479323219, −1.051883100317590, −0.4946625880526404, 0.4946625880526404, 1.051883100317590, 2.001976479323219, 2.318396488242236, 3.209963550372227, 3.539504959524621, 4.082104214576656, 4.680423917455344, 5.442934484262600, 5.848548383088903, 6.341030840966859, 6.684812231778760, 7.146353487814487, 7.961562689676261, 8.289603966737793, 8.962530261756539, 9.254382349496506, 9.731286488383858, 10.27256125284384, 10.62895106069463, 11.19074515281587, 11.66134253177173, 12.10044743382050, 12.79240228006369, 13.13051349781459

Graph of the $Z$-function along the critical line