Properties

Label 2-19800-1.1-c1-0-30
Degree $2$
Conductor $19800$
Sign $-1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 11-s − 4·13-s + 3·17-s + 5·19-s + 23-s + 2·29-s − 2·31-s + 5·37-s − 9·41-s − 12·43-s + 11·47-s − 6·49-s + 59-s − 5·71-s + 16·73-s + 77-s − 11·79-s + 6·83-s + 4·89-s + 4·91-s − 15·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.377·7-s − 0.301·11-s − 1.10·13-s + 0.727·17-s + 1.14·19-s + 0.208·23-s + 0.371·29-s − 0.359·31-s + 0.821·37-s − 1.40·41-s − 1.82·43-s + 1.60·47-s − 6/7·49-s + 0.130·59-s − 0.593·71-s + 1.87·73-s + 0.113·77-s − 1.23·79-s + 0.658·83-s + 0.423·89-s + 0.419·91-s − 1.52·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 11 T + p T^{2} \) 1.47.al
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 15 T + p T^{2} \) 1.97.p
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.99155970266676, −15.33741085194612, −14.90122774975274, −14.34884129540941, −13.70894964826863, −13.30649470630628, −12.57197708308350, −12.11870142116833, −11.68162812781285, −10.98242622108475, −10.24321739114206, −9.809822844819823, −9.448599975379302, −8.607381942669825, −7.990249239214786, −7.413961612926133, −6.906710008337749, −6.226808101319059, −5.293551831547688, −5.144483897491621, −4.216680072173607, −3.332568252800238, −2.903755241471516, −2.011588057832636, −1.045258695670476, 0, 1.045258695670476, 2.011588057832636, 2.903755241471516, 3.332568252800238, 4.216680072173607, 5.144483897491621, 5.293551831547688, 6.226808101319059, 6.906710008337749, 7.413961612926133, 7.990249239214786, 8.607381942669825, 9.448599975379302, 9.809822844819823, 10.24321739114206, 10.98242622108475, 11.68162812781285, 12.11870142116833, 12.57197708308350, 13.30649470630628, 13.70894964826863, 14.34884129540941, 14.90122774975274, 15.33741085194612, 15.99155970266676

Graph of the $Z$-function along the critical line