Properties

Label 2-193550-1.1-c1-0-0
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 8-s − 3·9-s + 4·11-s + 3·13-s + 16-s + 2·17-s + 3·18-s − 6·19-s − 4·22-s − 6·23-s − 3·26-s − 6·29-s − 11·31-s − 32-s − 2·34-s − 3·36-s + 4·37-s + 6·38-s − 8·41-s − 10·43-s + 4·44-s + 6·46-s − 7·47-s + 3·52-s + 2·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.353·8-s − 9-s + 1.20·11-s + 0.832·13-s + 1/4·16-s + 0.485·17-s + 0.707·18-s − 1.37·19-s − 0.852·22-s − 1.25·23-s − 0.588·26-s − 1.11·29-s − 1.97·31-s − 0.176·32-s − 0.342·34-s − 1/2·36-s + 0.657·37-s + 0.973·38-s − 1.24·41-s − 1.52·43-s + 0.603·44-s + 0.884·46-s − 1.02·47-s + 0.416·52-s + 0.274·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.04047379525\)
\(L(\frac12)\) \(\approx\) \(0.04047379525\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 11 T + p T^{2} \) 1.31.l
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + T + p T^{2} \) 1.59.b
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 5 T + p T^{2} \) 1.89.af
97 \( 1 + 16 T + p T^{2} \) 1.97.q
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.22042997708541, −12.40757316496773, −12.10732771263430, −11.53312393474938, −11.20935041286514, −10.83340154208937, −10.22193212254117, −9.758330142811636, −9.176349668471668, −8.824680568048891, −8.454754861965494, −7.942666519135144, −7.474968439701541, −6.677568200603629, −6.458093855774642, −5.828796081490340, −5.579986528066229, −4.715330994064002, −4.018449502616807, −3.524494289343505, −3.202811634510563, −2.171687501666166, −1.784035439826443, −1.270438403116587, −0.06280088351495491, 0.06280088351495491, 1.270438403116587, 1.784035439826443, 2.171687501666166, 3.202811634510563, 3.524494289343505, 4.018449502616807, 4.715330994064002, 5.579986528066229, 5.828796081490340, 6.458093855774642, 6.677568200603629, 7.474968439701541, 7.942666519135144, 8.454754861965494, 8.824680568048891, 9.176349668471668, 9.758330142811636, 10.22193212254117, 10.83340154208937, 11.20935041286514, 11.53312393474938, 12.10732771263430, 12.40757316496773, 13.22042997708541

Graph of the $Z$-function along the critical line