Properties

Label 2-19110-1.1-c1-0-50
Degree $2$
Conductor $19110$
Sign $-1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s + 12-s + 13-s − 15-s + 16-s + 3·17-s − 18-s − 7·19-s − 20-s − 24-s + 25-s − 26-s + 27-s − 6·29-s + 30-s + 2·31-s − 32-s − 3·34-s + 36-s + 2·37-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.727·17-s − 0.235·18-s − 1.60·19-s − 0.223·20-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 1.11·29-s + 0.182·30-s + 0.359·31-s − 0.176·32-s − 0.514·34-s + 1/6·36-s + 0.328·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 13 T + p T^{2} \) 1.79.n
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.05213398734789, −15.42550493256142, −14.92506069609432, −14.58362459224894, −13.90535967931033, −13.10007742033900, −12.77807484531562, −12.11652685244610, −11.43212356784389, −11.00448991925595, −10.24987682260963, −9.947989628340742, −9.068055277601590, −8.701781371100542, −8.173791931040209, −7.537141647140021, −7.119606268684237, −6.275614681859268, −5.783551727334502, −4.788031890944787, −4.058243069505522, −3.488242297460384, −2.651466976866246, −1.967267152521650, −1.081752531390253, 0, 1.081752531390253, 1.967267152521650, 2.651466976866246, 3.488242297460384, 4.058243069505522, 4.788031890944787, 5.783551727334502, 6.275614681859268, 7.119606268684237, 7.537141647140021, 8.173791931040209, 8.701781371100542, 9.068055277601590, 9.947989628340742, 10.24987682260963, 11.00448991925595, 11.43212356784389, 12.11652685244610, 12.77807484531562, 13.10007742033900, 13.90535967931033, 14.58362459224894, 14.92506069609432, 15.42550493256142, 16.05213398734789

Graph of the $Z$-function along the critical line