Properties

Label 2-19110-1.1-c1-0-43
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 5-s + 6-s + 8-s + 9-s + 10-s + 4·11-s + 12-s + 13-s + 15-s + 16-s + 18-s + 6·19-s + 20-s + 4·22-s + 24-s + 25-s + 26-s + 27-s + 6·29-s + 30-s + 10·31-s + 32-s + 4·33-s + 36-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.20·11-s + 0.288·12-s + 0.277·13-s + 0.258·15-s + 1/4·16-s + 0.235·18-s + 1.37·19-s + 0.223·20-s + 0.852·22-s + 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 1.11·29-s + 0.182·30-s + 1.79·31-s + 0.176·32-s + 0.696·33-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.582925963\)
\(L(\frac12)\) \(\approx\) \(6.582925963\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.71390392556630, −15.03725644490354, −14.54201027821756, −13.92049087598744, −13.68254224908394, −13.29925070647763, −12.25173279467699, −12.03082262989267, −11.56412019730398, −10.67288817918552, −10.11427354789103, −9.625791480106148, −8.947885509764238, −8.406975477950199, −7.755901757572732, −6.911456573578659, −6.566709901080448, −5.952022457912155, −5.040895139526846, −4.666152713809556, −3.699801638639734, −3.291832828720908, −2.549076516710022, −1.613448793082832, −1.022005234744641, 1.022005234744641, 1.613448793082832, 2.549076516710022, 3.291832828720908, 3.699801638639734, 4.666152713809556, 5.040895139526846, 5.952022457912155, 6.566709901080448, 6.911456573578659, 7.755901757572732, 8.406975477950199, 8.947885509764238, 9.625791480106148, 10.11427354789103, 10.67288817918552, 11.56412019730398, 12.03082262989267, 12.25173279467699, 13.29925070647763, 13.68254224908394, 13.92049087598744, 14.54201027821756, 15.03725644490354, 15.71390392556630

Graph of the $Z$-function along the critical line