Properties

Label 2-190400-1.1-c1-0-22
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s − 2·9-s − 2·11-s − 13-s − 17-s − 3·19-s + 21-s + 4·23-s + 5·27-s − 3·29-s − 31-s + 2·33-s + 8·37-s + 39-s − 12·41-s + 8·43-s − 5·47-s + 49-s + 51-s + 13·53-s + 3·57-s + 9·59-s − 5·61-s + 2·63-s + 10·67-s − 4·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s − 2/3·9-s − 0.603·11-s − 0.277·13-s − 0.242·17-s − 0.688·19-s + 0.218·21-s + 0.834·23-s + 0.962·27-s − 0.557·29-s − 0.179·31-s + 0.348·33-s + 1.31·37-s + 0.160·39-s − 1.87·41-s + 1.21·43-s − 0.729·47-s + 1/7·49-s + 0.140·51-s + 1.78·53-s + 0.397·57-s + 1.17·59-s − 0.640·61-s + 0.251·63-s + 1.22·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.192155793\)
\(L(\frac12)\) \(\approx\) \(1.192155793\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 + T + p T^{2} \) 1.3.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 15 T + p T^{2} \) 1.89.ap
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10293460656984, −12.69263553320815, −12.16605488361221, −11.53695474146662, −11.34639934634632, −10.82565020013663, −10.21695794809911, −10.03787123491007, −9.266037306418165, −8.776076897154402, −8.479014323442040, −7.810782960724981, −7.237240315595918, −6.867184818065818, −6.148890843227142, −5.931938509656637, −5.229909269454503, −4.906996359922717, −4.290999486192879, −3.572022605109945, −3.080631152196136, −2.401640283533073, −2.011818344793703, −0.9029903042284461, −0.3944409583410349, 0.3944409583410349, 0.9029903042284461, 2.011818344793703, 2.401640283533073, 3.080631152196136, 3.572022605109945, 4.290999486192879, 4.906996359922717, 5.229909269454503, 5.931938509656637, 6.148890843227142, 6.867184818065818, 7.237240315595918, 7.810782960724981, 8.479014323442040, 8.776076897154402, 9.266037306418165, 10.03787123491007, 10.21695794809911, 10.82565020013663, 11.34639934634632, 11.53695474146662, 12.16605488361221, 12.69263553320815, 13.10293460656984

Graph of the $Z$-function along the critical line