| L(s)  = 1 | + 2·3-s         + 7-s     + 9-s     − 2·11-s     − 13-s         − 17-s     − 6·19-s     + 2·21-s     − 9·23-s         − 4·27-s     − 6·29-s     + 5·31-s     − 4·33-s         − 7·37-s     − 2·39-s     − 5·41-s     − 8·43-s         − 9·47-s     + 49-s     − 2·51-s     + 2·53-s         − 12·57-s     − 14·59-s     − 13·61-s     + 63-s         + 2·67-s     − 18·69-s  + ⋯ | 
| L(s)  = 1 | + 1.15·3-s         + 0.377·7-s     + 1/3·9-s     − 0.603·11-s     − 0.277·13-s         − 0.242·17-s     − 1.37·19-s     + 0.436·21-s     − 1.87·23-s         − 0.769·27-s     − 1.11·29-s     + 0.898·31-s     − 0.696·33-s         − 1.15·37-s     − 0.320·39-s     − 0.780·41-s     − 1.21·43-s         − 1.31·47-s     + 1/7·49-s     − 0.280·51-s     + 0.274·53-s         − 1.58·57-s     − 1.82·59-s     − 1.66·61-s     + 0.125·63-s         + 0.244·67-s     − 2.16·69-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 7 | \( 1 - T \) |  | 
|  | 17 | \( 1 + T \) |  | 
| good | 3 | \( 1 - 2 T + p T^{2} \) | 1.3.ac | 
|  | 11 | \( 1 + 2 T + p T^{2} \) | 1.11.c | 
|  | 13 | \( 1 + T + p T^{2} \) | 1.13.b | 
|  | 19 | \( 1 + 6 T + p T^{2} \) | 1.19.g | 
|  | 23 | \( 1 + 9 T + p T^{2} \) | 1.23.j | 
|  | 29 | \( 1 + 6 T + p T^{2} \) | 1.29.g | 
|  | 31 | \( 1 - 5 T + p T^{2} \) | 1.31.af | 
|  | 37 | \( 1 + 7 T + p T^{2} \) | 1.37.h | 
|  | 41 | \( 1 + 5 T + p T^{2} \) | 1.41.f | 
|  | 43 | \( 1 + 8 T + p T^{2} \) | 1.43.i | 
|  | 47 | \( 1 + 9 T + p T^{2} \) | 1.47.j | 
|  | 53 | \( 1 - 2 T + p T^{2} \) | 1.53.ac | 
|  | 59 | \( 1 + 14 T + p T^{2} \) | 1.59.o | 
|  | 61 | \( 1 + 13 T + p T^{2} \) | 1.61.n | 
|  | 67 | \( 1 - 2 T + p T^{2} \) | 1.67.ac | 
|  | 71 | \( 1 + 8 T + p T^{2} \) | 1.71.i | 
|  | 73 | \( 1 - 8 T + p T^{2} \) | 1.73.ai | 
|  | 79 | \( 1 - 16 T + p T^{2} \) | 1.79.aq | 
|  | 83 | \( 1 - T + p T^{2} \) | 1.83.ab | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 16 T + p T^{2} \) | 1.97.aq | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.59170778359681, −13.33008612384248, −12.72381413230889, −12.08064044785136, −11.91298857938117, −11.15844186990668, −10.64390910636757, −10.29013167343956, −9.728308492983214, −9.275628426863607, −8.744232428782512, −8.230966278378925, −8.004764287214387, −7.624400756817606, −6.871886310376154, −6.341557896123274, −5.903902395073888, −5.122290005145143, −4.739066987195823, −4.058786341165222, −3.613874965142329, −3.037225350792723, −2.419187961550552, −1.864484412534808, −1.614134396634640, 0, 0, 
1.614134396634640, 1.864484412534808, 2.419187961550552, 3.037225350792723, 3.613874965142329, 4.058786341165222, 4.739066987195823, 5.122290005145143, 5.903902395073888, 6.341557896123274, 6.871886310376154, 7.624400756817606, 8.004764287214387, 8.230966278378925, 8.744232428782512, 9.275628426863607, 9.728308492983214, 10.29013167343956, 10.64390910636757, 11.15844186990668, 11.91298857938117, 12.08064044785136, 12.72381413230889, 13.33008612384248, 13.59170778359681
