Properties

Label 2-190400-1.1-c1-0-125
Degree $2$
Conductor $190400$
Sign $1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s − 2·11-s − 13-s − 17-s − 6·19-s + 2·21-s − 9·23-s − 4·27-s − 6·29-s + 5·31-s − 4·33-s − 7·37-s − 2·39-s − 5·41-s − 8·43-s − 9·47-s + 49-s − 2·51-s + 2·53-s − 12·57-s − 14·59-s − 13·61-s + 63-s + 2·67-s − 18·69-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s − 0.603·11-s − 0.277·13-s − 0.242·17-s − 1.37·19-s + 0.436·21-s − 1.87·23-s − 0.769·27-s − 1.11·29-s + 0.898·31-s − 0.696·33-s − 1.15·37-s − 0.320·39-s − 0.780·41-s − 1.21·43-s − 1.31·47-s + 1/7·49-s − 0.280·51-s + 0.274·53-s − 1.58·57-s − 1.82·59-s − 1.66·61-s + 0.125·63-s + 0.244·67-s − 2.16·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + T + p T^{2} \) 1.13.b
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + 13 T + p T^{2} \) 1.61.n
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.59170778359681, −13.33008612384248, −12.72381413230889, −12.08064044785136, −11.91298857938117, −11.15844186990668, −10.64390910636757, −10.29013167343956, −9.728308492983214, −9.275628426863607, −8.744232428782512, −8.230966278378925, −8.004764287214387, −7.624400756817606, −6.871886310376154, −6.341557896123274, −5.903902395073888, −5.122290005145143, −4.739066987195823, −4.058786341165222, −3.613874965142329, −3.037225350792723, −2.419187961550552, −1.864484412534808, −1.614134396634640, 0, 0, 1.614134396634640, 1.864484412534808, 2.419187961550552, 3.037225350792723, 3.613874965142329, 4.058786341165222, 4.739066987195823, 5.122290005145143, 5.903902395073888, 6.341557896123274, 6.871886310376154, 7.624400756817606, 8.004764287214387, 8.230966278378925, 8.744232428782512, 9.275628426863607, 9.728308492983214, 10.29013167343956, 10.64390910636757, 11.15844186990668, 11.91298857938117, 12.08064044785136, 12.72381413230889, 13.33008612384248, 13.59170778359681

Graph of the $Z$-function along the critical line