Properties

Label 2-186576-1.1-c1-0-31
Degree $2$
Conductor $186576$
Sign $1$
Analytic cond. $1489.81$
Root an. cond. $38.5981$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 3·5-s − 4·7-s + 9-s + 3·15-s + 6·17-s + 5·19-s − 4·21-s + 23-s + 4·25-s + 27-s + 8·29-s − 10·31-s − 12·35-s − 4·37-s + 10·41-s + 9·43-s + 3·45-s − 11·47-s + 9·49-s + 6·51-s − 9·53-s + 5·57-s + 5·59-s − 4·63-s − 5·67-s + 69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.34·5-s − 1.51·7-s + 1/3·9-s + 0.774·15-s + 1.45·17-s + 1.14·19-s − 0.872·21-s + 0.208·23-s + 4/5·25-s + 0.192·27-s + 1.48·29-s − 1.79·31-s − 2.02·35-s − 0.657·37-s + 1.56·41-s + 1.37·43-s + 0.447·45-s − 1.60·47-s + 9/7·49-s + 0.840·51-s − 1.23·53-s + 0.662·57-s + 0.650·59-s − 0.503·63-s − 0.610·67-s + 0.120·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186576 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186576\)    =    \(2^{4} \cdot 3 \cdot 13^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1489.81\)
Root analytic conductor: \(38.5981\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 186576,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.515473929\)
\(L(\frac12)\) \(\approx\) \(4.515473929\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 5 T + p T^{2} \) 1.19.af
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 9 T + p T^{2} \) 1.79.j
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96634844280359, −12.78349495363762, −12.51406531544725, −11.81670257138706, −11.20680268008141, −10.45235929262318, −10.22173646197283, −9.693329468065959, −9.321721919333816, −9.232681010463234, −8.436412755264581, −7.763865386508935, −7.382639406095249, −6.780614192555422, −6.320107608170314, −5.823942834234467, −5.436424669736273, −4.898325715506123, −4.045137719322645, −3.324654581859503, −3.174938559494376, −2.563560463517653, −1.905011590734938, −1.220574062384814, −0.6075847161508503, 0.6075847161508503, 1.220574062384814, 1.905011590734938, 2.563560463517653, 3.174938559494376, 3.324654581859503, 4.045137719322645, 4.898325715506123, 5.436424669736273, 5.823942834234467, 6.320107608170314, 6.780614192555422, 7.382639406095249, 7.763865386508935, 8.436412755264581, 9.232681010463234, 9.321721919333816, 9.693329468065959, 10.22173646197283, 10.45235929262318, 11.20680268008141, 11.81670257138706, 12.51406531544725, 12.78349495363762, 12.96634844280359

Graph of the $Z$-function along the critical line