Properties

Label 2-181056-1.1-c1-0-28
Degree $2$
Conductor $181056$
Sign $-1$
Analytic cond. $1445.73$
Root an. cond. $38.0228$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·7-s + 9-s − 4·11-s − 5·13-s − 15-s + 3·17-s + 19-s − 2·21-s − 23-s − 4·25-s + 27-s − 6·29-s + 9·31-s − 4·33-s + 2·35-s + 4·37-s − 5·39-s − 41-s + 8·43-s − 45-s − 3·49-s + 3·51-s − 6·53-s + 4·55-s + 57-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.20·11-s − 1.38·13-s − 0.258·15-s + 0.727·17-s + 0.229·19-s − 0.436·21-s − 0.208·23-s − 4/5·25-s + 0.192·27-s − 1.11·29-s + 1.61·31-s − 0.696·33-s + 0.338·35-s + 0.657·37-s − 0.800·39-s − 0.156·41-s + 1.21·43-s − 0.149·45-s − 3/7·49-s + 0.420·51-s − 0.824·53-s + 0.539·55-s + 0.132·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 181056 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(181056\)    =    \(2^{6} \cdot 3 \cdot 23 \cdot 41\)
Sign: $-1$
Analytic conductor: \(1445.73\)
Root analytic conductor: \(38.0228\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 181056,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
23 \( 1 + T \)
41 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 - 7 T + p T^{2} \) 1.89.ah
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25211881097133, −12.95823943426619, −12.51971570593947, −12.07323555175998, −11.60331204439091, −11.02197895776523, −10.41646743350058, −9.959280238237057, −9.577704932911252, −9.389779199043912, −8.434296666266391, −8.062728728358017, −7.637433292773641, −7.339362449427820, −6.728971983815810, −6.038076967182559, −5.588075475071375, −4.957293313020039, −4.500303575659474, −3.838612350214876, −3.322183352497151, −2.647465573750862, −2.494698282041847, −1.616742312510877, −0.6462549199252677, 0, 0.6462549199252677, 1.616742312510877, 2.494698282041847, 2.647465573750862, 3.322183352497151, 3.838612350214876, 4.500303575659474, 4.957293313020039, 5.588075475071375, 6.038076967182559, 6.728971983815810, 7.339362449427820, 7.637433292773641, 8.062728728358017, 8.434296666266391, 9.389779199043912, 9.577704932911252, 9.959280238237057, 10.41646743350058, 11.02197895776523, 11.60331204439091, 12.07323555175998, 12.51971570593947, 12.95823943426619, 13.25211881097133

Graph of the $Z$-function along the critical line