Properties

Label 2-180336-1.1-c1-0-11
Degree $2$
Conductor $180336$
Sign $1$
Analytic cond. $1439.99$
Root an. cond. $37.9472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·7-s + 9-s − 2·11-s − 13-s + 4·19-s + 2·21-s − 8·23-s − 5·25-s + 27-s − 2·29-s − 6·31-s − 2·33-s − 8·37-s − 39-s − 4·41-s + 4·43-s − 3·49-s − 14·53-s + 4·57-s − 8·59-s + 10·61-s + 2·63-s + 12·67-s − 8·69-s − 6·71-s + 8·73-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.755·7-s + 1/3·9-s − 0.603·11-s − 0.277·13-s + 0.917·19-s + 0.436·21-s − 1.66·23-s − 25-s + 0.192·27-s − 0.371·29-s − 1.07·31-s − 0.348·33-s − 1.31·37-s − 0.160·39-s − 0.624·41-s + 0.609·43-s − 3/7·49-s − 1.92·53-s + 0.529·57-s − 1.04·59-s + 1.28·61-s + 0.251·63-s + 1.46·67-s − 0.963·69-s − 0.712·71-s + 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180336\)    =    \(2^{4} \cdot 3 \cdot 13 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1439.99\)
Root analytic conductor: \(37.9472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 180336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.543125289\)
\(L(\frac12)\) \(\approx\) \(1.543125289\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20491793174913, −12.74945927435413, −12.08163543458823, −11.93136052963207, −11.19081056488921, −10.87714024856523, −10.23462968480822, −9.805572970123910, −9.399486109318276, −8.902624605478367, −8.108849795693152, −7.965708201688175, −7.622666575318246, −6.956319113154124, −6.420063455959366, −5.662978006346470, −5.307867137608808, −4.835423137425694, −4.095320008043894, −3.672689160239103, −3.131193226160880, −2.355585329566976, −1.857522334715775, −1.461757739692554, −0.3187096510417091, 0.3187096510417091, 1.461757739692554, 1.857522334715775, 2.355585329566976, 3.131193226160880, 3.672689160239103, 4.095320008043894, 4.835423137425694, 5.307867137608808, 5.662978006346470, 6.420063455959366, 6.956319113154124, 7.622666575318246, 7.965708201688175, 8.108849795693152, 8.902624605478367, 9.399486109318276, 9.805572970123910, 10.23462968480822, 10.87714024856523, 11.19081056488921, 11.93136052963207, 12.08163543458823, 12.74945927435413, 13.20491793174913

Graph of the $Z$-function along the critical line